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ABSTRACT 

Mass concrete is a type of concrete used for structures with large dimensions that require 

precautionary measures to be taken in order to control the heat.   The heat generated in the core of 

such a structure, due to hydration of cementitious materials, is dissipated at a slow rate leading to 

the formation of high temperature differential. This increases the risk of temperature-induced 

stresses and cracking that is dependent on many factors such as the materials and proportion of 

concrete mix, environmental and construction conditions, etc. In order to prevent cracking, a 

thermal control plan is essential before the placement of concrete that in turn requires prior 

knowledge of the temperature development in the mass concrete member. In this context, this 

study presents the analysis of a case in which the construction of a mass concrete bridge foundation 

was investigated and a computer program, ConcreteWorks (CW), was used to predict its overall 

thermal performance. Predictions of temperature development profile, temperature differential, 

maturity, and compressive strength were made using CW and were also validated with the 

measured data. The results suggest CW to be a useful tool for developing a thermal control plan 

and for the prevention of thermal cracking. 

From the perspective of the rate of heat dissipation in a mass concrete element, thermal 

conductivity of concrete is an important parameter. Keeping other parameters the same, a concrete 

mix of high thermal conductivity can reduce the risk of temperature-induced cracking by 

increasing the rate of dissipation of heat. Therefore, in this study, the effects of various concrete 

materials, such as supplementary cementitious materials (SCMs), normal-weight, lightweight, and 

recycled aggregates, and steel and polypropylene (PP) fibers, on the thermal conductivity of 

concrete were experimentally determined. SCMs, lightweight, and recycled aggregates reduced 

conductivity of concrete while steel fiber was observed to improve it. In addition to the 
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experimental measurements, a prediction model for thermal conductivity was also developed. For 

this purpose, a database was developed from published articles and various machine learning (ML) 

algorithms were evaluated for their prediction accuracies. Performance metrics indicated an 

artificial neural network to be the best ML algorithm for the developed dataset and a 14-6-1 model 

architecture was finally adopted. The robustness of this model was also evaluated on an 

unseen/independent dataset that furnished satisfactory results with good performance (R2 ~ 0.80).   
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CHAPTER 1.    GENERAL INTRODUCTION 

Background and Motivation 

Concrete, a cement-based composite, is the most widely used construction material (Mehta 

and Monteiro 2006). Portland cement, aggregates, and water are the principal constituents of 

concrete and its structure also consist of voids. The hydration reaction of Portland cement, that 

provides strength, progresses with time and hence the mechanical properties and durability of 

concrete also change with time. It shows different properties in fresh and hardened states. A 

freshly-mixed concrete is of plastic consistency that provides it the ability to flow into formworks 

while in its hardened state, concrete is usually considered to be a three-phase composite consisting 

of aggregate particles, hydrated cement paste, and interfacial transition zone (ITZ) (Mehta and 

Monteiro 2006; Neville and Brooks 2010). With the progress of hydration, the pore structure of 

concrete also evolves with the time that makes it denser. This minimizes the probability of attack 

by harmful chemicals thereby making concrete more durable.  

Nowadays, various materials are used as an additive or replacement to constituents of 

concrete with objectives of performance enhancement, sustainable construction, and economy. 

This has led to the design of special types of concrete e.g., high-strength and high-performance, 

lightweight, self-consolidating concrete and others. Mass concrete is also one of such types. ACI 

116R defines mass concrete as “any volume of concrete with dimensions large enough to require 

that measures be taken to cope with generation of heat from the hydration of cement and attendant 

volume change to minimize cracking” (ACI (American Concrete Institute) 2000). Due to the large 

dimension of a mass concrete structure, the heat generated in its core is dissipated at a very slow 

rate or not dissipated at all leading to the formation of temperature differential. This increases the 

risk of thermal cracking. To minimize the risk of cracking, various preventive measures are taken 
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that includes (but not limited to) appropriate mix proportioning, control of pre-construction 

parameters, and post-construction measures (Juenger and Siddique 2015; Lothenbach et al. 2011; 

Scrivener et al. 2015; Shanahan et al. 2016). In this context, a knowledge of the temperature 

development in a mass concrete member is helpful in developing a thermal control plan prior to 

the placement of concrete. Finite element based computer programs (for example, ConcreteWorks 

and 4C Temp&Stress) are generally used for this purpose. Although a good number of published 

articles discuss various aspects of mass concrete construction (Lv and Qiao 2011; Yin et al. 2013; 

Zhang et al. 2012; Zheng et al. 2017; Zhu et al. 2004, 2014), not many studies have been performed 

on the tools available for prediction of temperature development and their validation on a real-

time project. One of the motivations of this study is to address this research gap.  

Another important aspect related to the rate of heat dissipation and temperature 

development in mass concrete is the thermal properties of concrete.  Thermal conductivity, 

coefficient of thermal expansion, specific heat, etc. are some of these properties with thermal 

conductivity (hereafter denoted as ‘k’) being the most important one. Studies suggest that 

increasing conductivity of concrete can reduce the probability of early-age thermal cracking in a 

mass concrete member (Poole et al. 2006; Riding et al. 2013; Sargam et al. 2019). This can be 

explained by the fact that an increase in k of concrete increases the rate of dissipation of heat 

generated in the core of the member. This results in a reduced temperature differential that further 

reduces the cracking probability. The constituents of mass concrete used nowadays comprise of 

various materials (such as supplementary cementitious materials, lightweight aggregates, recycled 

aggregates, fibers, etc.) that can affect its k and consequently the cracking probability. For 

example, due to their porous structure, the use of lightweight aggregates reduce the overall k of 

concrete whereas steel fiber has an opposite effect. In this context, a knowledge of the effect of 
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these constituent materials on k of concrete can aid in the design of mass concrete mixes and 

consequently in the development of thermal control plan. Although this knowledge is helpful, 

experimentally determined value of k is desired for the prediction of temperature development in 

mass concrete structures. However, due to the requirement of sophisticated test procedures, 

experimental measurement of k of concrete for every such structure is impractical. Hence, a model 

for prediction of k is demanded. A few mathematical (Campbell-Allen and Thorne 1963) and 

neural network (Lee et al. 2012) based models have been developed for this purpose. However, 

these models are not updated to the data corresponding to modern concrete materials, which often 

contain various supplementary cementitious materials (SCMs), different types of aggregates, and 

additives (e. g., fibers). This led to another motivation of this study to first experimentally 

determine the effect of various constituents of concrete on its thermal conductivity and then 

develop a prediction model for the same.  

Objectives 

In light of the above discussions, the overall goal of this study is the experimental 

measurement and predictive analysis of mass concrete parameters and concrete thermal 

conductivity. The specific objectives are as follows: 

(1) To use a computer program called ConcreteWorks for the prediction of temperature 

development profile of a mass concrete bridge foundation and validate these predictions with 

the measured data 

(2) To perform a sensitivity analysis (using ConcreteWorks) on the effect of various mass 

concrete parameters on temperature development 

(3) To determine the effect of various modern constituent materials and age of concrete on its 

thermal conductivity using a simple test procedure 
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(4) To develop a prediction model for thermal conductivity of concrete using machine learning 

algorithms 

Thesis Organization 

This thesis is organized into five chapters. 

Chapter 1 presents the background, motivation, and objectives of this study.  

Chapter 2 to 4 each comprises of a journal article in modified form. These articles are ordered as 

follows: 

• Chapter 2 

Predicting thermal performance of a mass concrete foundation – A field monitoring case 

study by Yogiraj Sargam, Mahmoud Faytarouni, Kyle Riding, Kejin Wang, Charles Jahren, 

and Jay Shen 

This chapter presents a case study in which the construction of a mass concrete bridge 

foundation in Iowa, USA was investigated and a computer program, ConcreteWorks (CW), 

was used to predict its overall thermal performance with an aim to prevent thermal 

cracking. 

• Chapter 3 

Effects of modern concrete materials on thermal conductivity by Yogiraj Sargam, Kejin 

Wang, and James Alleman 

This chapter presents the results from an experimental study on the effects of various 

modern materials viz. SCMs, fibers, lightweight and recycled aggregates, etc., on the 

thermal conductivity of concrete. 
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• Chapter 4 

Predicting thermal conductivity of concrete using machine learning algorithms by Yogiraj 

Sargam, Kejin Wang, and In Ho Cho 

This chapter presents a machine learning-based prediction model for thermal conductivity 

of concrete. Various machine learning algorithms were evaluated and the parameters of the 

best-performing algorithm were tuned to improve the prediction accuracy.  

Chapter 5 discusses the overall conclusions of this study.  
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CHAPTER 2.    PREDICTING THERMAL PERFORMANCE OF A MASS CONCRETE 

FOUNDATION – A FIELD MONITORING CASE STUDY 

Modified from a manuscript published in Case Studies in Construction Materials 

Yogiraj Sargam1, Mahmoud Faytarouni2, Kyle Riding3, Kejin Wang4, Charles Jahren5, Jay Shen6 

 

Abstract 

High-temperature differentials in a mass concrete structure pose great risks of temperature-

induced stresses and cracking. Prior knowledge of temperature development within such a 

structure is essential.  In this context, this paper presents a case study in which the construction of 

a mass concrete bridge foundation in Iowa, USA was investigated and a computer program, 

ConcreteWorks (CW), was used to predict its overall thermal performance with an aim to prevent 

thermal cracking. The properties of mass concrete mixes, required as CW inputs, were measured 

through isothermal and semi-adiabatic calorimetry tests. The temperature development profile, 

temperature differential, maturity, and compressive strength of the mixes were predicted and 

compared with those measured through the real-time monitoring of the bridge foundation. It was 

observed that CW predictions match well with their corresponding measured values. Three 

 
1 Graduate Research Assistant; Iowa State University; Department of Civil, Construction, and 

Environmental Engineering; 813 Bissell Road , Ames, IA, USA, 50011; email:  ysargam@iastate.edu 
2 Graduate Research Assistant; Iowa State University; Department of Civil, Construction, and 

Environmental Engineering; 813 Bissell Road , Ames, IA, USA, 50011; email:  mfayt@iastate.edu 
3 Associate Professor; University of Florida; Engineering School of Sustainable Infrastructure and 

Environment; 265G Weil Hall, Gainesville, FL, USA, 116580; email: kyle.riding@essie.ufl.edu 
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locations, centroid, top, and the face nearest to the centroid of the foundation, were found to be 

critical points for high temperature differentials. A sensitivity analysis, analyzing the effects of 

various mass concrete parameters, is also presented. The results provided clear insights into the 

temperature development of concrete with complex material compositions and environmental 

conditions. CW is a useful tool in developing thermal control plan for mass concrete projects.  

Keywords: Case study – Mass concrete – Bridge foundation – Thermal cracking – ConcreteWorks 

– Sensitivity analysis 

Introduction 

ACI 116R defines mass concrete as “any volume of concrete with dimensions large enough 

to require that measures be taken to cope with generation of heat from the hydration of cement and 

attendant volume change to minimize cracking” (ACI (American Concrete Institute) 2000). 

Generally, structural members with a least dimension greater than 4 ft., fall into this category. The 

early-age temperature development in mass concrete structures has a significant impact on their 

durability. A high temperature differential in such structures can result in large temperature-

induced stresses that can cause cracking, especially at early ages (Ballim 2004; Choktaweekarn 

and Tangtermsirikul 2010; Kolani et al. 2012; Nili and Salehi 2010). This can also cause durability 

problems such as delayed ettringite formation (DEF) and increased reinforcing steel corrosion risk 

from thermal cracking (Riding et al. 2006). The high temperature differential is primarily caused 

by a large amount of heat generated, due to hydration of cementitious materials, in the core of the 

structure that is dissipated at a very slow rate or is not dissipated locally, representing a true 

adiabatic condition (ACI (American Concrete Institute) 2006; Folliard et al. 2002; Riding et al. 

2006, 2013). To minimize the risk of cracking, various preventive measures are taken that includes 

(but not limited to) the use of SCMs to replace parts of cement, precooling aggregates and water 
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before concrete mixing, the use of icy water or liquid nitrogen, cooling pipes, insulation blankets 

and others (Juenger and Siddique 2015; Lothenbach et al. 2011; Scrivener et al. 2015; Shanahan 

et al. 2016). Often a combination of these methods is necessary and is employed in relevant 

projects.  

Nowadays, a very common procedure in mass concrete projects is to develop a thermal 

control plan (TCP) before the placement of concrete. Many studies have been carried out and a 

few finite element-based analysis computer programs (e.g., 4C Temp&Stress and ConcreteWorks) 

have been developed that help in predicting this temperature development. ConcreteWorks (CW) 

has specific capabilities to predict the early age thermal development and cracking potential of 

mass concrete and can assist in devising a TCP (Riding 2007). It contains modules for several 

structural concrete applications, including bridge deck types, precast concrete beams, and concrete 

pavements (Folliard et al. 2017). CW input data include: (a) concrete material properties 

(cementitious properties, mix proportions, etc.); (b) structural parameters (shape, dimension, 

subgrade condition etc.); (c) construction parameters (concrete placement temperature, casting 

rate, curing/insulation methods, formwork removal time etc.); and (d) environmental parameters 

(ambient temperature variation, relative humidity, wind speed etc.). The prediction of maximum 

absolute temperature, maximum temperature differential, maturity and compressive strength 

development with time, and cracking potential are furnished as outputs. The temperature 

development profile at any specified point in a mass concrete structure can also be obtained for 

analysis.  

Based on experiences and observations from individual mass concrete projects, comprising 

mostly of dams and mat foundations, researchers have suggested the mix designs, construction 

technologies (Lv and Qiao 2011; Yin et al. 2013; Zhang et al. 2012; Zheng et al. 2017; Zhu et al. 
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2004, 2014) and ways to reduce heat, the probability of cracking, and cost of such projects (Abdun-

Nur et al. 1990; Dunstan and Mitchell 1976; Lawrence et al. 2014; Poole et al. 2006; Wang et al. 

2005; Xu et al. 2012). A few case studies could be found in the literature related to mass concrete 

construction. For example, Luther et al. (Luther et al. 2008) presented 30 case studies about various 

mass concrete projects in North America that included dams, mat foundations, bridge pier 

foundations and stems, reservoir foundations, and caissons. These case studies focused mainly on 

the concrete mixes (containing slag cement) used and the resulting temperature development. The 

details about the thermal control measures, adopted in the projects, were not discussed. Dilek 

(Dilek 2011) discussed the planning aspect of a critical mass concrete placement. A complete 

investigation of the construction process, with a focus on the adopted insulation regime, was 

presented.  However, extensive validation of the predicted data was not discussed. To summarize, 

although a good amount of literature is available that discusses various aspects of a mass concrete 

project, studies related to aids available for developing a TCP and the validation of their application 

are scarce. 

This paper presents a case study where CW was used for prediction of temperature 

development in a mass concrete bridge foundation and it was validated with actual/measured data. 

A rectangular footing of a bridge pier in Iowa, USA was selected for the investigation. The 

properties of concrete and its constituent materials were determined through various lab and field 

tests. The measured material properties, foundation temperature development profiles, and the 

results of the thermal analysis performed using CW are presented along with brief sensitivity 

analysis on the effect of various mass concrete parameters on temperature development. The 

observations from this case study will reinforce the importance of a TCP in a mass concrete project 

and can also provide experimental validation for the use of CW for future similar projects.  
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Investigation of a Mass Concrete Foundation 

Real-time monitoring of the construction and heat development of a bridge foundation was 

carried out. A rectangular footing of a bridge pier, which was a mass concrete member as per ACI-

207 (ACI (American Concrete Institute) 2006), was investigated. The project chosen for the 

investigation was I-35 NB to US 30 WB (Ramp H) bridge in Ames, Iowa. This was a 7-span 

continuous welded steel girder bridge constructed on 6 concrete piers with a total length of 1690 

feet and a width of 36 feet. Fig. 1(a) shows a cross-section of the bridge along with all the piers 

and the location map of the bridge is shown in Fig. 1(b). The dimensions of the six pier footings 

are presented in Table 1. The footings of all of the six piers had a rectangular cross-section except 

one, the footing of pier 3 that had a cross-section of a rectangle with cuts at the two opposite 

corners. The rectangular footing of pier 4 was selected for this investigation as it was the largest 

amongst all footings with the dimensions of 33 ft. x 27 ft. x 7 ft. which. The depth of the footing 

(7 ft.) was the critical dimension that qualified it as a mass concrete member as per IA DOT 

specification (Iowa DOT 2009) and, therefore, its construction and early-age temperature profile 

were analyzed.  

The temperature development in a mass concrete structure is dependent on a range of 

factors such as the subsurface profile, boundary and environmental conditions, concrete mix 

proportion, cooling method, and others. For this reason, the construction of pier 4 footing was 

studied in three stages – before, during, and after the placement of concrete. Some of the important 

information is presented and discussed in the sections below. 

Subsurface Profile 

The bridge site was located in an area of Iowa that has been formed by extensive Wisconsin 

age glacial activity. During the initial stage of project finalization, a soil investigation at the job 
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site was carried out by HDR Inc. The primary geologic strata encountered in this investigation 

included topsoil, existing fill soils, cohesive alluvium, alluvial sand, glacial till, and bedrock. 

Topsoil depths ranged from 5 to 8 inches along the project alignment. Bedrock was encountered 

at depths ranging from 34 to 83 feet. The bedrock units appeared to include siltstone, sandstone, 

and shale based on examination of split-barrel samples, with varying degrees of weathering. 

Footing Support, Subbase, and Formwork 

The load transfer mechanism for the footing was a total of 30 HP 14 x 117 steel bearing H-

piles driven 55 feet below the ground surface and the steel reinforcement footing cage was placed 

over these piles. Based on the outcomes of the soil investigation, a layer of crushed limestone 

aggregate was placed on the subbase to provide a firm and dry casting surface.  

Fig. 2 (a) shows the driven H-piles and the crushed rock casting surface. In central Iowa, 

usually, wood and steel formwork materials are used to form footing placements. The choice of 

formwork material depends on the nature of construction as well as the availability and cost of the 

material. Wood formwork was used in the construction of the footing. This formwork consisted of 

plywood attached to galvanized cold-rolled steel supporting members with nails. These, in turn, 

were supported by vertical cold-rolled steel members of the longer cross-section. 

Insulation Method 

The footing was constructed in the month of June when the average daily ambient 

temperature was 79 °F (26 °C). The temperature at the outer faces of footing was expected to be 

close to the ambient temperature while that in the core was expected to be higher due to cement 

hydration.  This might have caused a large temperature differential. In order to keep the differential 

within the acceptable limits, the footing was insulated 10 hours after the placement of concrete. 

The exterior of the wood formwork and the top face of the footing were wrapped with a 2-inch 
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thick black insulation blanket with a specified R-value rating of 5 [Fig. 2(b)]. The decision 

regarding the removal of insulation and formwork should be made based on the monitoring of 

temperature development and environmental conditions. The environmental conditions such as the 

ambient temperature and relative humidity have a significant impact on the temperature 

development in a mass concrete member as well as on the hydration process of cementitious 

materials. Therefore, these parameters were also monitored, and the formwork was removed on 

the 5th day after the placement of concrete while the footing was kept covered with insulation 

blankets up until the 10th day. After removal of blankets, the footing surface was visually 

examined, and no cracking was observed. 

Installation of Temperature Sensors 

To monitor the temperature development of the concrete placement in footing, the 

temperature data were recorded in one-hour intervals and were monitored remotely as well at 4-

hours intervals for a period of 10 days from the day of the concrete placement. A total of 7 sets of 

temperature sensors were installed. Each set included a primary and a backup temperature sensor. 

After installation, the exact location of the sensors was measured as shown in Fig. 3 (S1-S7). The 

locations are also explained as follows: 

S1 – at the center of the concrete footing, installed 2.75 ft. below the top surface 

S2 – in the middle of the length and width, near the top and lateral surfaces of the footing, installed 

at 6 inches below the top surface 

S3 – in the middle of the length and height, installed at 3 inches inside the long lateral surface, 2.9 

ft. from the top surface and 2.5 ft. from the bottom surface  

S4 – installed outside the formwork, to measure the ambient air temperature  

S5 – 1.08 ft. below S2, to monitor the temperature change along the vertical direction  
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S6 – installed at the middle of the height and width, 3 inches inside the short lateral surface, 3 ft. 

from the top surface and 2.5’ from the bottom surface, to monitor the temperature in another cross-

section,  

S7 – installed in the center, 1 ft. above the bottom surface of the footing, to investigate the effect 

of the subgrade temperature 

Experimental Program 

Materials and Mix Proportion 

Ready-mixed concrete was used for the placement of footing. The concrete mix proportion 

is shown in Table 2. Materials used in the concrete were Type I/II cement, class C fly ash, 1-inch 

nominal maximum size limestone coarse aggregate, and river sand as fine aggregate. Total 

cementitious content of the mix was replaced with 20% of fly ash (by weight). The chemical 

composition of cementitious materials is presented in Table 3. Coarse and fine aggregates were 

tested for their properties such as specific gravity, absorption, dry – rodded unit weight (DRUW), 

and fineness modulus. The specific gravity, absorption, and DRUW of coarse aggregate were 

measured to be 2.68, 0.82%, and 100.44 lbs./ft.3, respectively. The specific gravity, absorption, 

and fineness modulus of fine aggregate were measured to be 2.65, 0.98%, and 2.85, respectively. 

Test Methods 

Tests for measuring fresh properties of concrete were performed as per relevant ASTM 

standard test procedures. Slump (ASTM C143), air content (ASTM C173), and unit weight 

(ASTM C138) of the concrete mix were measured at the construction site during placement of 

concrete. Cylindrical specimens (4 in. x 8 in.) were cast and cured in site conditions for various 

hardened properties tests such as maturity (ASTM C1074) and compressive strength  (ASTM 

C39). Nurse-Saul maturity method was employed in this study to monitor the development of 
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compressive strength of concrete based on its temperature history. Maturity was calculated in 

terms of temperature-time factor (TTF). The compressive strength-maturity relationship was then 

developed by performing a regression analysis to determine a best-fit equation to the measured 

data. The best-fit equation was found to be of the form where compressive strength is a linear 

function of the logarithm of TTF as given in Eqn. (1). 

S = a + b log (M)           (1) 

Where S is the compressive strength (in psi), M is the TTF (in °F –hours), and ‘a’ and ‘b’ are 

coefficients.  

Isothermal and semi-adiabatic calorimetry tests were performed to analyze the heat 

development due to the hydration of cementitious materials. In this study, an eight-channel PTC 

isothermal calorimeter was used to measure the heat generation of cement pastes following ASTM 

C1702. The semi-adiabatic calorimetry test method is explained in the following section.  

Semi-adiabatic Calorimetry 

The characterization of the temperature rise in a mass concrete structure requires an 

estimate of the adiabatic temperature rise of the concrete mixture (Poole 2007). Adiabatic 

calorimetry requires a process in which no heat is gained or lost to the system’s surroundings. 

However, due to its high set-up cost and the requirement of a large sample size, it is less practical 

than a semi-adiabatic calorimeter. Therefore, in general, semi-adiabatic calorimetry is performed 

in which the heat loss is also measured and the measured temperature values of the concrete are 

corrected to account for this loss. Even though the semi-adiabatic calorimetry method is a common 

test, there is no standard test method for this. This study followed the guidelines outlined by Poole 

et al. based on which a semi-adiabatic calorimeter was developed in the laboratory (Poole 2007). 

A schematic diagram showing the details of the calorimeter is shown in Fig. 4. 
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24 inches by 34 inches cylindrical drum was used for building the semi-adiabatic 

calorimeter. Aeromarine insulation foam was poured inside the drum which solidifies and acts as 

the insulation. Top insulation lid was also prepared using the same insulation foam. For installing 

the 7 in. x 14 in. steel chamber in the middle of the drum, galvanized steel sheet was used. Fresh 

concrete collected from the construction site during concrete placement (into a 6 in. x 12 in. 

cylinder) was immediately transported to the laboratory (to minimize the heat loss) and was placed 

inside the steel chamber. The temperature was measured using Type T thermocouples (TC) at three 

locations – one at the center of the concrete specimen (MID), one at the surface of the steel chamber 

(EXT1) and one at an inch away from the chamber surface in the insulation (EXT2). EXT1 and 

EXT2 TCs were installed to measure the heat loss through the calorimeter. MID TC was placed 6 

inches into the center of the fresh concrete specimen. A plug-in for this thermocouple was installed 

at the edge of the steel chamber opening. For connecting thermocouple wires to the data logger, a 

hole was drilled in the middle of the drum surface through which the wires were taken out. The 

test set up was kept in a closed room where temperature variations were limited. The temperature 

data were recorded using Pico Technology USB TC-08 data logger for 160 hours at 15-minute 

intervals. The calorimeter was calibrated before the test to determine the calibration factors. The 

values of the calibration factors 1 and 2 were 0.0197 and 0.3970 W/°C, respectively.  

Results and Discussions 

Material Properties 

General properties of concrete mix 

The ready-mixed concrete at the construction site was tested for its fresh properties 

following relevant ASTM standards as mentioned earlier. The values of the slump, air content, 

unit weight, and temperature were measured to be 2.75 in., 7.50%, 149.12 lbs./ft.3, and 63.6 °F, 

respectively. The compressive strength development was monitored by the Nurse-Saul maturity 
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method as shown in Fig. 5(a). Compressive strength is plotted as a function of the temperature-

time factor (TTF) in Fig. 5(b). The values of the coefficients ‘a’ and ‘b’ of the best-fit linear 

equation [Eq. (1)] were calculated to be -5610.1 and 1089.7, respectively. 

Activation energy 

It is well-known in cement chemistry that like other chemical reactions, the hydration of 

cementitious materials is also sensitive to temperature. The apparent activation energy is a useful 

measure of the early-age temperature sensitivity of a concrete mixture and various calculation 

methods have been proposed for its calculation. A single linear approximation of reaction rate was 

used in this study for activation energy calculation (L Poole et al. 2007). The paste (cement + fly 

ash) samples were tested in the isothermal calorimeter at four constant temperatures: 10, 20, 30, 

and 40 °C. The reaction rate was calculated using a single, best-fit least-squares line of the linear, 

acceleration phase of the isothermal rate of heat curve. The slope of the best-fit line determined 

the reaction rate k at a particular temperature. ln (k) was then plotted versus the inverse of absolute 

temperature to determine Ea. The plot obtained in this study is shown in Fig. 6. The Ea of this mix 

was calculated to be 34,173 J/mol. This value was then used as an input in CW for predictions of 

the temperature profile of mass concrete foundation.  

Hydration curve parameters 

The fresh concrete sample collected from the pier 4 footing placement was brought to the 

lab for the semi-adiabatic calorimetry test. The test was run for 160 hours which recorded the 

temperature development under semi-adiabatic conditions along with the temperature change due 

to heat loss from the calorimeter. However, since the conditions in a mass concrete structure are 

truly adiabatic, the temperature development under these conditions needed to be known. The 

apparent activation energy (calculated from isothermal calorimetry), total heat of hydration 
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(estimated from the chemical composition of cementitious materials), and the measured data from 

semi-adiabatic calorimetry were used to calculate a theoretical adiabatic hydration curve following 

the procedure outlined by Poole et al. (Poole 2007). The measured and calculated semi-adiabatic 

and calculated adiabatic curves are shown in Fig. 7. Three curve-fit parameters (αu, β, and τ) were 

obtained by fitting a theoretical curve to the measured semi-adiabatic curve as presented in Table 

4. αu (= 0.748) is the ultimate degree of hydration (DOH), β (= 0.840) is the hydration shape 

parameter, and τ (= 20 hours) is the hydration time parameter. A larger αu indicates the higher 

magnitude of ultimate DOH, larger β indicates a higher hydration rate at the linear portion of 

hydration curve, and a larger τ means a larger delay of hydration (Xu et al. 2010). These parameters 

of the concrete mix were then used as inputs in CW for temperature prediction for the mass 

concrete foundation. 

Results from Foundation Investigation 

As discussed in section 2, sensors were installed in the mass concrete foundation to monitor 

the temperature development after the placement of concrete. The monitoring was done until the 

insulation was removed. The measured values of temperature by all the sensors are plotted in Fig. 

8. The differential temperatures along with the Iowa DOT specified limits in early-age mass 

concrete are shown in Fig. 9. Analyzing the measured data and the plots presented in Figs. 8-9, the 

following observations, can be made: 

• The concrete temperature at the time of placement was 66.2 °F which was within the Iowa 

DOT specified limits of 40 °F and 70 °F. 

• The maximum concrete temperature of 149 °F was recorded at the core (sensor S1) that 

occurred after 40.35 hours of concrete placement (Fig. 8). The conditions in the core of a 

mass concrete member, a rectangular footing, in this case, can be almost fully adiabatic for 
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a few days. The heat generated, due to the exothermic hydration reaction of cementitious 

materials and water, is not dissipated easily. It is due to this reason that the temperature at 

the core of the member was found to be maximum. The Iowa DOT specification requires 

the concrete temperature in mass concrete structures to be less than 160 °F. 

• The temperature differential (TD) between the core and the north as well as the long side 

sensors (Fig. 9) was found to be well within the specified limits whereas that between the 

core and top sensors was observed to cross the specified limit only for a short duration 

from 44 to 48 hours. Barring this, TD was well within the specified limits. The maximum 

value of TD was observed to be 39.6 °F that occurred around 73.5 hours after the placement 

of concrete. 

• The maximum value of the temperature recorded at the top of the footing (S2) was 120 °F 

while that at the bottom of the footing was 134.6 °F. 

• No significant difference was observed in the recorded temperatures in the centers of the 

North and West side faces (S3 and S6). 

Thermal Analysis using ConcreteWorks 

ConcreteWorks computer program was used for thermal analysis of the rectangular footing 

investigated in this study. With structural, material, construction, and environmental parameters 

as inputs, CW predicts the maximum temperature (Tmax), maximum temperature differential 

(ΔTmax), maturity and strength development, and cracking potential of a mass concrete member. 

In this analysis, the measured properties of the concrete mix, as presented in section 4.1, were used 

as inputs. For all other inputs, CW default values were used. Baseline values of all the inputs, used 

for the analysis of footing, are presented in Table 5. 
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Usually, in rectangular footings that qualify as mass concrete, only three locations are 

critical from the perspective of thermal cracking. These locations are core, top, and the center of 

the face at the smallest distance from the core of the footing (the short side in this case; sensor S3 

in Fig. 3). Therefore, the temperature profile at these three locations of the footing was analyzed 

using CW and compared with the measured values as shown in Fig. 10. Following observations 

can be made: 

• CW predicted Tmax to be 149.16 °F at the core of the footing, which was only slightly more 

than the measured value of 149 °F. The complete temperature development profile at the 

core predicted by CW simulates the measured profile really well as shown in Fig. 10(a). 

CW prediction of the time to reach Tmax (52 hours) was also close to that of the field-

measured value (50 hours). If the approximate time to reach Tmax is known in addition to 

the value of Tmax, an appropriate TCP can be developed in advance to control thermal 

cracking. 

• The Tmax prediction at the top of the footing by CW was 121.2 °F against a measured value 

of 120.2 °F. Also, CW simulation of the complete temperature development profile at the 

top was quite close to the measured profile except for an underestimation after around 125 

hours [Fig. 10(b)]. 

• CW underestimated the temperature profile at the short side by approximately 3.5 °F on an 

average. Tmax prediction was 136.3 °F while the measured value was 143.6 °F. It can be 

seen from Fig. 10(c) that the overall temperature profile was underestimated by CW. 

Large temperature differences in a mass concrete member can be very detrimental from the 

perspective of thermal cracking/shock. The temperature difference causes a volume change due to 

expansion/contraction when the member is restrained by adjacent parts of the mass foundation 
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which might result in cracking (Riding et al. 2006). It is for this reason that most of the 

specifications restrict ΔTmax that a mass concrete member can experience during early age and 

therefore various preventive measures are employed in this age to meet the specifications and to 

prevent cracking.   

It is very helpful in developing a preventive TCP if the TD between the critical points 

within a mass concrete member can be predicted in advance. CW predicts Tmax as one of the 

outputs. The differential between two points could also be predicted and analyzed. In this study, 

the differentials between the core and other critical locations top, and the short side of the 

rectangular footing were predicted using CW and compared with the measured values. The 

differential temperature charts are shown in Fig. 11. The time series for maximum TD specified 

by Iowa DOT is also plotted in these charts. The observations from Fig. 11 are as follows: 

• CW prediction of the core and top TD profile very well simulated the measured profile, as 

shown in Fig. 11 (a). Since this is the most critical TD, its prediction close to the actual 

value, (especially in the initial 100 hours), can be very helpful in preparing the TCP. CW, 

however, overestimated the core and top TD after around 125 hours of the placement of 

concrete that can be said to be conservative from the perspective of the factor of safety. 

The TD profile between the core and the center of the face at the shortest distance from the 

core (short side) was overestimated by CW for the entire duration of analysis, as can be seen in 

Fig. 11 (b). On average, CW overestimated the TD between the core and short side by 9.5 °F. 

Similar to the core and top TD prediction, this is also conservative. 

ConcreteWorks Sensitivity Analysis 

A brief sensitivity analysis was performed, using ConcreteWorks, to investigate the effects 

of various parameters on the temperature development in mass concrete. Critical variables in three 
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major groups (Mix proportion, concrete material properties, and construction parameters) were 

analyzed for their effects on the maximum temperature and temperature differential in the 

rectangular footing. The analyzed inputs, baseline values, and their input and output ranges (and 

trends) are shown in Table 6. The baseline values were kept the same as those used in the thermal 

analysis presented in section 4.3. The trends observed in maximum temperature (Tmax) and 

maximum TD (ΔTmax) corresponding to the changes in input types are plotted as bar charts in Fig. 

12 and are discussed in following sub-sections.  

Mix proportion parameters 

The mix proportion parameters evaluated were cement content, class C fly ash, class F fly 

ash, slag, and silica fume. It can be observed from Fig. 12(a) that increasing cement content from 

414 lbs. /yd3 to 594 lbs. /yd3 increased Tmax as well as ΔTmax. This can be attributed to the increase 

in heat of hydration with an increase in cement content in the concrete mix. Replacing cement with 

supplementary cementitious materials (SCMs) is an effective way of reducing heat and this is 

confirmed with the trends shown in Fig. 12(a). Increasing the replacement percentage of C fly ash, 

F fly ash, and silica fume reduced Tmax and ΔTmax. A similar reducing trend was also observed in 

the case of slag replacement from 0% to 50%. However, an increase in both Tmax and ΔTmax can 

be seen from 50% to 70%. This is contrary to earlier belief but some of the recent experimental 

adiabatic studies on concrete mixes containing slag confirm this observation (Moon et al. 2018). 

The effect of pozzolanic as well as the latent hydraulic activity of slag on the cement hydration 

might be the reasons for an increase in the generated heat. This needs to be investigated further. 

However, the observations from this sensitivity study can be used to optimize the concrete mix 

proportion for minimum heat generation.  
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Material properties 

Cement type, coefficient of thermal expansion (CTE), concrete thermal conductivity (k), 

and combined aggregate specific heat capacity (Cp) were the concrete material properties 

investigated in this study (Fig. 12). The order of Tmax and ΔTmax in case of cement types were I > 

I/II > II > V. This is expected as the heat generation due to cement hydration depends 

predominantly on the C3A content of cement. The typical C3A contents of these cement types 

reduce in that order (I > I/II > II > V) thereby reducing Tmax and ΔTmax. Changing CTE did not 

have any effect whereas increasing k and Cp reduced Tmax and ΔTmax. Thermal conductivity is 

defined as the rate of heat conduction and as it increases, the heat generated in the core of a mass 

concrete member is dissipated at a faster rate thereby reducing Tmax and ΔTmax.  

Construction parameters 

The parameters related to mass concrete construction are also important factors affecting 

the temperature development. Placement temperature, formwork type, insulation blanket R-value, 

curing method, and subbase type were construction parameters evaluated in this study (Fig. 12). 

Mass concrete placement temperature was observed to have a great impact on Tmax and ΔTmax. A 

30 °F increase in placement temperature caused a corresponding 30 °F and 11.45 °F increase in 

Tmax and ΔTmax, respectively. Various formwork types (steel, wood, and insulated steel) and curing 

methods (curing compound, blanket, and white/black plastic) were evaluated separately but no 

change was observed in the temperature development. However, their combinations along with 

changes in other properties might result in an increase/decrease of Tmax and ΔTmax. R-value is a 

quantification of the thermal insulation property of a material (insulation barrier such as a blanket) 

and is defined as the ratio of material thickness and its thermal conductivity. A greater R-value 

represents better insulation power of the material. Increasing R-value of the insulation blanket 
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from 0.51 to 1.41 hr-ft2-F/BTU increased Tmax and ΔTmax by 1.15 °F and 0.63 °F, respectively 

which can be said to be a minimal change. Type of subbase, on the other hand, was found to affect 

heat dissipation considerably. Changing topsoil to concrete subbase, Tmax increased only by 

approximately 1.8 °F while an increase of 9.5 °F occurred in ΔTmax. A similar change of subbase 

type from limestone to sand resulted in a 1.2 °F and 15.1 °F increase in Tmax and ΔT, respectively. 

Conclusions 

In this study, ConcreteWorks (CW) computer program was used to perform a brief 

sensitivity study and to predict the temperature profile of a mass concrete structure. The predictions 

were validated for their accuracies with the results and observations from the investigation of a 

mass concrete bridge footing. Specific conclusions from this study are as follows: 

(1) The apparent activation energy (Ea) and hydration curve parameters (αu, β, and τ), obtained 

respectively from isothermal and semi-adiabatic calorimetry measurements, are two 

significant material properties for temperature development predictions in a mass concrete 

member. 

(2) The temperature differentials, between the centroid (core) and the midpoints of the top surface 

and the surface nearest to the centroid of a rectangular mass concrete footing, are critical for 

thermal cracking. The temperature development at these three locations is necessary to be 

monitored. 

(3) CW predictions of absolute maximum temperature, maximum temperature differential, 

maturity, and compressive strength development for the rectangular footing were all very 

precise in their comparisons with the measured data. 
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(4) The temperature differentials (core-top and core-short side) were slightly overestimated by 

CW, especially after 125 hours. However, this can be said to be conservative from the 

perspective of the factor of safety. 

(5) Sensitivity study revealed a considerable impact of concrete mix proportion, cement type, 

concrete thermal properties, placement temperature, insulation R-value, and foundation 

subbase on temperature development in the footing.  
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Figures 

 

 

 

(b) Location (Map data © 2019 Google) 

Fig. 1. US30-I35 Bridge in Iowa, USA 

(a) cross-section 
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(a) Diagram of footing support and subbase  (b) Footing covered with insulation blanket 

Fig. 2. Pier 4 footing and insulation 

 

 

Fig. 3. Location of temperature sensors installed in the footing (not in scale) 
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Fig. 4. Schematic diagram of the semi-adiabatic calorimeter 

 

Fig. 5. (a) Compressive strength development; and (b) strength-maturity relationship 
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Fig. 6. Arrhenius plot for activation energy calculation 

 

 

Fig. 7. Semi-adiabatic and true adiabatic curves 
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(a) Core and side sensors 

 

(b) Top, 1.08’ from top, ambient, and bottom sensors 

Fig. 8. Temperature measured by installed sensors 
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Fig. 9. Measured differential temperature in footing 

 

Fig. 10. Measured and CW predicted temperature profiles at (a) core of the footing 
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Fig. 10. (continued) Measured and CW predicted temperature profiles at (b) top; and (c) 

short side of the footing 
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Fig. 11. CW predicted and measured temperature differentials 
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(a) Mix proportion parameters  (b) Material properties parameters   (c) Construction parameters 

Fig. 12. Effect of mass concrete parameters on maximum temperature (Tmax) and temperature differential (ΔTmax) 
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Tables 

Table 1. Dimensions of all pier footings 

Footing of pier # Dimension of footing 

(length x width x depth) 

Pier 1  33’x 21’x 6’ 

Pier 2 33’x 21’x 6’ 

Pier 3 33’x 27’x 6’ 

Pier 4 33’x 27’x 7’ 

Pier 5 30.5’x 21’x 6’ 

Pier 6 33’x 21’x 6’ 

 

Table 2. Mass concrete mix proportion 

 

Mixture Constituents  Quantity 

(lb./yd3) 

Cement (Type I/II) 474 

Fly Ash (Class C) 119 

Fine Agg. 1500 

Coarse Agg. 1517 

Water  255 

Water-to-Binder ratio 0.43 

 

Table 3. Chemical composition of cementitious materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxides Type I/II 

cement 

(%) 

Class C fly 

ash 

 (%) 

SiO2 20.44 33.76 

Al2O3 5.11 15.23 

Fe2O3 3.27 6.30 

CaO 60.95 31.17 

MgO 3.59 4.98 

SO3 3.03 2.25 

Na2O 0.18 1.35 

K2O 0.61 0.60 

Others 1.52 4.93 

LOI 1.96 0.57 
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Table 4. Estimated total heat, activation energy, and hydration curve parameters 

Mixture Hu, J/Kg Ea, J/mol αu β τ, hours R2 

Concrete 472,296 34,173 0.748 0.840 20.006 0.994 
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Table 5. ConcreteWorks inputs for thermal analysis of bridge footing 

Parameter  Value Units Parameter Value Units 

General Inputs Member Inputs 

Project location  Ames, IA Shape choice Rectangular Footing 

Unit system  English  Member width 27 Ft. 

Analysis duration  14 days Member length 33 Ft. 

Concrete placement 

time 

 8 AM Member depth 7 Ft. 

Mixture Proportions Material Properties 

Cement content  474 lb/yd3 Cement type I/II 
 

C Fly ash   119 lb/yd3 Cement chemistry values Measured (from Table 3) 
 

Water content  255 lb/yd3 Hydration parameter values αu=0.748; β=0.840; τ=20 
 

Coarse agg. Content  1517 lb/yd3 Thermal conductivity 1.56 BTU/hr-ft-°F 

Fine agg. content  1500 lb/yd3 CTE 4.6 10-6/°F 

Air content  7.5 % Coarse agg. type Limestone 
 

Chemical admixture   Type A, NRWR Fine agg. type Siliceous river sand 
 

Construction Inputs Environmental Inputs 

Concrete fresh temp  66.2 °F Ave. daily max temp. 81.5 °F 

Blanket R-value  0.5 hr-ft2-

°F/BTU 

Ave. daily min temp. 58 °F 

Form type  Wood 
 

Ave. daily max solar 

radiation 

731.1 W/m2 

Soil temperature  80 °F Ave. daily max wind speed 24.1 m/s 

Footing subbase  Limestone  Ave. daily max RH 95.1 % 

Side cure method  Black plastic  Ave. daily min RH 45 % 
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Table 6. ConcreteWorks sensitivity analysis 

 

Group 

 

Input type 

 

Baseline values 

 

Input range 

 

Unit 

Range of Outputs (°F) 

T
max

 (trend) ΔT
max

 (trend) 

 

Mix 

proportion 

inputs 

Cement content 474 414,474,534,594 pcy 127-138 (→) 22-26 (→) 

C fly ash replacement 20 0,20,30,40 % 135-127 () 26-21 () 

F fly ash replacement 0 0,20,30,40 % 135-116 () 26-17 () 

Slag replacement 0 0,30,50,70 % 135-137 () 26-25 () 

Silica fume replacement 0 0, 3, 5, 8 % 135-129 () 26-23 () 

 

Material 

Properties 

inputs 

Cement type I/II I,II, I/II, V Type 137-118 () 26-18 () 

CTE 4.6 2.6,3.6,4.6,5.6 10-6/F 131-131 (--) 24-24 (--) 

Concrete k 1.59 0.99, 1.29, 1.59, 1.89 BTU/hr.-ft-F 134-130 () 29-22 () 

Combined aggregate Cp 0.2 0.18, 0.19, 0.20, 0.22 BTU/lb.-F 138-126 () 27-21 () 

 

 

 

 

Construction 

inputs 

Placement temperature 66 51, 66, 81, 96 °F 114-164 (→) 19-37 (→) 

Formwork type Steel Steel, wood, insulated steel Type 132-132 (--) 24-24 (--) 

Blanket R-value 0.51 0.51, 0.81, 1.11, 1.41 hr.-ft
2
-

F/BTU 

132-134 (→) 24-25 (→) 

 

Curing method 

 

Black plastic 

White curing compound, black 

plastic, wet curing blanket, white 

or clear plastic 

 

method 

 

132-132 (--) 

 

24-24 (--) 

Type of subbase Limestone Limestone, topsoil, concrete, 

sand 

type 132-134 (→) 09-24 (→) 
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CHAPTER 3.    EFFECTS OF MODERN CONCRETE MATERIALS ON THERMAL 

CONDUCTIVITY 

Modified from a manuscript published in Journal of Materials in Civil Engineering   

Yogiraj Sargam7, Kejin Wang8, James E. Alleman9 

 

Abstract 

Thermal conductivity, k, is one of the key factors that control heat transfer in concrete. This 

paper presents the results of an experimental study conducted to analyze the effects of modern 

concrete materials, such as supplementary cementitious materials (SCMs), normal-weight, 

lightweight, and recycled aggregates, and steel and polypropylene (PP) fibers, on the thermal 

conductivity of concrete. The thermal conductivity tests were performed on cylindrical specimens of 

concrete mixes containing various amounts of these materials. The results indicate that k values of 

concrete reduced with the amount of SCM (slag and fly ash) replacement for cement. The mineralogy 

and absorption of normal weight aggregate considerably affect k value of concrete. Replacing normal 

weight coarse aggregate by lightweight or recycled aggregate reduced the k value of concrete. 

Addition of steel fiber at a dosage higher than 0.25% (by volume) increased k value of concrete 

noticeably, while the addition of up to 2% PP fiber showed little effect.   

Keywords:  Concrete – Thermal Conductivity – SCMs – Lightweight Aggregate – Recycled 

Aggregate - Fiber  

 

 
7 Graduate Research Assistant; Iowa State University; Department of Civil, Construction, and Environmental 

Engineering; 813 Bissell Road , Ames, IA, USA, 50011; email:  ysargam@iastate.edu 

8 Professor; Iowa State University; Department of Civil, Construction, and Environmental Engineering; 412 

Town Engineering Building, Ames, IA, 50011 (corresponding author); email: kejinw@iastate.edu 
9 Professor; Iowa State University; Department of Civil, Construction, and Environmental Engineering; 420 

Town Engineering Building, Ames, IA, 50011; email: jea@iastate.edu 

file:///C:/Users/ysargam/Box%20Sync/MS%20and%20PhD%20related%20docs/MS/ysargam@iastate.edu
mailto:kejinw@iastate.edu
file:///C:/Users/ysargam/Box%20Sync/Abstracts%20and%20Papers/Papers/Conductivity%20Paper/ASCE%20submission/jea@iastate.edu


www.manaraa.com

49 

 

 

 

 

 

Introduction  

Thermal properties of concrete materials are attracting increasing attention, not only because 

of their effects on building energy efficiency but also on structural performance and serviceability. 

Thermal conductivity, k, defined as the constant of proportionality between heat flux and temperature 

gradient, is one of the major factors governing heat transfer. Materials with low k values are generally 

desired for structures that require thermal insulation, such as buildings and radiation shielding in 

nuclear power stations (Campbell-Allen and Thorne 1963; Khan 2002). Many countries, including 

the United States (US), have adopted energy-conservation building codes and standards. ACI 

Committee 122 (2002) states that “the design of energy-conserving buildings now requires an 

expanded understanding of the thermal properties of the building envelope and the materials 

comprising the envelope system”. On the other hand, materials with high k levels are desired for floors 

and driveways with embedded heaters (Marshall 1972). Thermal conductivity is also a very important 

parameter in the design and control of thermal cracking of concrete pavements, large foundations, 

and dam structures (Gui et al. 2007; Schindler 2002). Gui et al. (2007) studied the impact of pavement 

thermophysical properties on surface temperatures, and they suggested that among other effects, k 

could also contribute to Urban Heat Island (UHI) impacts.  

Modern concrete materials, such as various supplementary cementitious materials (SCMs), 

different types of aggregates (lightweight and recycled aggregates), and fibers, have been increasingly 

used in transportation structures, such as pavements and bridge decks, as well as large foundations 

(mass concrete), where thermal behavior is important and sensitive for the structure performance. 

Using a computer program, ConcreteWorks (Folliard et al. 2017; Riding 2007), the authors of this 

paper have recently evaluated the effect of thermal conductivity of concrete materials on the early-

age temperature development of a bridge foundation. Thermal analyses were performed on a 33 ft. x 

27 ft. x 7 ft. (8.23 m x 10.06 m x 2.13 m) rectangular footing of a bridge pier, which is considered as 

a mass concrete member according to ACI Committee 207 (2006). In the analyses, all input 
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parameters were kept the same and only k value of concrete was changed. Fig. 1 shows the 

temperature development in the footing as predicted by ConcreteWorks for different values of k. 

According to the figure, as k was increased from 0.4 W/m-K to 1.6 W/m-K, the maximum temperature 

developed in the core of rectangular footing decreases from 68 C to 63 C at the age of 3 days, and 

the temperature decrease become faster at later ages. Such a reduction in the maximum temperature 

can bring about a reduction in the maximum differential temperature and can subsequently reduce the 

early-age thermal cracking probability of the structural element.  Therefore, understanding the 

thermal behavior of construction materials is essential for the design of the thermal control plan for 

placing concrete in extreme weather (hot and cold) conditions and for mass replacement. 

Research has revealed that the factors affecting thermal conductivity of concrete include: 

mineralogical characteristics of aggregate, mix proportion, density, moisture,  and degree of hydration 

of concrete (Breugel 1998; Campbell-Allen and Thorne 1963; Khan 2002; Marshall 1972; Schindler 

2002). Since approximately 50-70% volume of concrete is often occupied by aggregates, the type and 

volume of aggregates in a concrete mix have the most influence on its conductivity. Aggregates with 

lower k values produce less conductive concrete and vice-versa (Campbell-Allen and Thorne 1963; 

Neville 2011). Quartzite and sandstone aggregates have the highest k; limestone and dolomite have 

intermediate effects, whilst basalt and dolerite have the lowest k values (Marshall 1972). Several 

researchers have shown that there is a direct relationship between density and k of concrete (Ganjian 

1990), while others (ACI (American Concrete Institute) 2002; Valore 1980) displayed an exponential 

relationship between dry density and k of concrete. ACI Committee 122 also suggests an increase of 

6% in k value of concrete for each 1% of moisture by weight (ACI (American Concrete Institute) 

2002). Ganjian (1990) performed extensive research to study the effect of porosity, pore-volume, and 

pore structure on the k of concrete. He also developed a mathematical model relating k of concrete to 

its dry density, total porosity, and median pore diameter. However, other influencing factors, such as 

supplementary cementitious materials (SCMs), fiber addition, etc., were not considered in his model. 
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Recently, more researches have been conducted to determine k of concrete containing various waste 

materials, some of which were summarized by Misri et al. (2018). However, in spite of the vast range 

and extent of waste materials used in concrete, prior study of thermal conductivities within waste-

amended and/or additive-supplemented concrete remains limited. 

This paper presents the results and discussions from a simple thermal conductivity 

experiment, performed on concrete containing different types of aggregate (e.g., normal-weight 

aggregates with different absorption values, lightweight, and recycled aggregate), SCMs (e. g., fly 

ash and ground granulated blast furnace slag (GGBFS)), and fibers (steel and polypropylene fiber). 

The effects of these concrete materials on thermal conductivity are analyzed. The analysis of the 

experimental dataset is also presented wherein trend lines of the variation in thermal conductivity of 

concrete are shown as functions of its dry-density and compressive strength.  

Experimental Program 

Materials and Mix Proportions 

  One type of Portland cement and two types of blended cement were used in this study, and 

they are Type I/II cement meeting ASTM C150 criteria, Type IP(25) cement containing 25% class F 

fly ash, and Type IS(20) cement containing 20% grade 100 GGBFS satisfying ASTM C595 criteria. 

The SCMs used included Class C fly ash under ASTM C618 and Grade 100 slag under ASTM C989. 

Table 1 shows the chemical composition, Blaine’s fineness, and specific gravity (SpG) of these types 

of cement and SCMs. 

  One fine aggregate was used in all concrete mixes studied, which was river sand. This sand 

had a specific gravity of 2.68, absorption of 1.39%, and fineness modulus of 2.75. Three different 

types of coarse aggregates were used, including normal-weight aggregate, lightweight aggregate, and 

recycled concrete aggregate. The lightweight aggregate was expanded shale. The recycled aggregate 

was obtained from a concrete pavement in Minnesota, USA. Table 2 provides the specific gravity and 

absorption of the coarse aggregates, and Fig. 2 provides the gradation of the aggregates.  
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  Two types of fibers were used, and they are steel fiber and polypropylene (PP) fiber. The 

length and diameter of both types of fiber were 12.7 mm and 0.2 mm. The aspect ratios of these two 

fibers were accordingly the same (63.5). Two types of admixtures were also evaluated, including the 

air-entraining agent (AEA) and medium-range water-reducer (MRWR). The AEA was synthetic and 

the MRWR was a lignosulfonates-based material.   

  Different concrete mixes were studied; all of the mixes had different types of cementitious 

materials and aggregates.  The effect of the water-to-binder ratio (w/b) on thermal conductivity was 

evaluated using concrete mixes containing recycled concrete as coarse aggregate. Table 3 presents 

the mix proportions of all concrete mixes based on the volume fraction of constituent materials. The 

lightweight and recycled aggregate replacements were prepared in relation to the volume of coarse 

aggregate in the mix. Therefore, the mix proportions of concrete mixes shown here are presented in 

terms of the volume fraction of constituents. 

 

Experiments 

Sample preparation 

Following the designed mix proportion as presented in Table 3, concrete mixes were prepared 

as per the standard operating procedure ASTM C192 (ASTM 2016) using a pan mixer. After testing 

fresh properties of a concrete mix, cylindrical specimens (4” X8”) were prepared for various tests 

such as compressive strength and dry density. The specimen preparation for thermal conductivity test 

was a bit different (shown in Fig. 3). At first, two iron disks of 1-inch thickness and a ½ inch diameter 

rod were prepared [Fig. 3 (a)]. One disk was kept at the bottom of the 4-inch diameter by 8-inch 

length cylindrical mold and the iron rod was inserted through it [Fig. 3 (b)]. The disk was made to 

hold the rod. The concrete was then cast into the cylinder, compacted, and the other disk was then 

kept on the top. After 24 hours, the rod was pulled out, the disks were removed, and the set concrete 

sample was demoulded [Fig. 3 (c)]. After demolding, all cylindrical specimens were then cured in 
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limewater curing baths (ASTM C192) for the desired time. Prior to testing, the specimens for thermal 

conductivity tests were dried in the oven at 105 °C for 48 hours and then cooled to room temperature.      

Test methods 

Tests for measuring fresh properties of concrete were performed as per relevant ASTM 

standard test procedures. Slump (ASTM C143), air content (ASTM C173), and unit weight (ASTM 

C138) of all concrete mixes were measured. After 28 days of curing, the cylindrical specimens were 

tested for compressive strength and oven-dry density in accordance with ASTM C39 (ASTM 2016) 

and ASTM C127 (ASTM 2015) test procedures respectively.  

Several steady and transient methods can be used to measure the thermal conductivity of 

concrete, and different methods may furnish different values (Asadi et al. 2018; Gomes et al. 2017).  

The most widely used procedure for measuring thermal conductivity is that of ASTM C177-13 (i.e., 

“Standard test method for steady-state heat flux measurements and thermal transmission properties 

by means of guarded hot plate apparatus”) (ASTM 2004). This method tracks specimen temperature 

at steady state to determine k and requires precise slab specimen geometries. Unfortunately, though, 

this method is not recommended for highly non-homogeneous materials such as concrete. The test 

method used in this project was the one proposed by Carlson et al. (2010), “Determining thermal 

conductivity of paving materials using cylindrical sample geometry”. This experimental method 

allows thermal properties to be determined from commonly used cylindrical specimen geometries 

with minimal preparation. The complete test setup for measuring thermal conductivity is shown in 

Fig. 4 (a). Below are the detailed steps for the experiment: 

(1) A silicone-based paste (k = 2.3 W/m-K), manufactured by Omega Engineering, Inc., was poured 

evenly into the central 0.5” diameter hole of the specimen, and a cartridge heater (0.375” diameter, 

1000W, with a resistance of 57.9 Ω) was then inserted into the hole/core. 

(2) Seven temperature sensors (Type K thermocouples) were installed at various locations as shown 

in Fig. 4 (b). One sensor was at one third from the top into the core of the specimen (Core top). 
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One sensor was at one third from the bottom into the core of the specimen (Core bottom). Five 

sensors were on the outer surface of the specimen (S1, S2, S3, S4, and S5). One sensor was used 

to measure the ambient temperature. 

(3) Two ½ inch thick Styrofoam insulation sheets (Fig. 4) were placed at the top and bottom of the 

cylindrical specimen and the entire setup was held together using three bar clamps. 

(4) The thermocouples were connected to a data logger, which recorded the temperature data of all 

the eight sensors at two minutes intervals.  

(5) To start a test, the heater inserted in a test sample was connected to a voltage regulator, which 

was connected to a power source. Then, a voltage was gradually applied to the heater, which was 

measured by a multimeter. 

It was noticed that as the applied voltage increased, the temperature in the core of the tested 

sample also increased. A very high testing temperature may have a significant effect on the concrete 

microstructure, thus affecting the test results. As a result, an attempt was made to control the core 

temperature to be around 50°C. Based on previous experiments (Bai 2013; Carlson et al. 2010), the 

input voltage was set to 21.7 V with an input power of 8.13 W in the present experiments. The testing 

temperature was recorded from this point. Fig. 4 (c) shows an example of the temperature profiles 

during the test, where the thermal conductivity was calculated every half an hour until the difference 

between two adjacent measurements became less than 2%, which was considered as the steady-state. 

It has been observed in the experiments that it took approximately two and a half hours for a concrete 

specimen to reach its steady-state. 

An important factor in measuring k of materials is to establish a one-dimensional heat flow. 

In the present study, this was achieved by thermally isolating the top and bottom of the cylindrical 

specimen and using highly conductive paste in the core according to the research conducted by 

Carlson et al. (2010). Since the thermal conductivity of the Styrofoam insulating sheet (0.02 W/m-K) 

placed on the top of the tested specimen was significantly lower than that of Omega paste (2.3 W/m-
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K) in the hole of the specimen, more heat was transferred horizontally through the specimen. Thus, 

heat loss could be neglected, and Equation (1) was used for the overall calculation of thermal 

conductivity. 

𝒌 =
(𝑽𝑰)∙𝒍𝒏⁡(𝒓𝟐 𝒓𝟏)⁄

𝟐𝝅𝑳⁡(𝑻𝟏−⁡𝑻𝟐)
                (1) 

Where k is the thermal conductivity (W/m-K), VI is the power input to the heater (W), r2 and r1 are 

outer and inner radii (m), L is the length of the specimen (m), T1 is the average temperature in the 

core of the specimen (K), and T2 is the average temperature on the surface of the specimen (K). The 

k value calculated using Equation (1) at the steady-state was then taken as the k of the tested concrete 

specimen. A minimum of three specimens was tested for each concrete mix and two separate tests 

were performed for each specimen. The mean value of six observations was thus considered as the 

final k of that mix.   

Experimental Results and Discussion  

General Properties of Concrete Mixes 

All concrete mixes were tested for their fresh and hardened properties. The measured values 

of these properties are all presented in Table 4. Slump for most of the mixes were 76.2 ± 25.4 mm (3 

± 1 inch). For mixes containing steel fiber and recycled aggregate, the slump was adjusted using an 

additional dosage of medium-range water reducer. The air content of most of the mixes was measured 

to be 5-8%. The air-entrainment was not done in concrete mixes containing recycled aggregate and 

hence the air contents of such mixes were not measured. Unit weight was measured using a calibrated 

0.007 m3 (0.25 ft3) cylinder. 

Effect of w/b 

Four concrete mixes with varying w/b and containing recycled coarse aggregate (Table 3) were 

prepared to evaluate the effect of w/b ratio on the conductivity of concrete. The measured values of k 

are plotted in Fig. 5. The table inserted in the figure also shows the dry density and the 95% confidence 
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intervals (CIs) for the measured mean k values of all the mixes. The confidence interval here means 

that there is 95% belief that if the test is performed several times, the mean k will lie in the specified 

interval.  

The trend in Fig. 5 shows that with an increase in w/b ratio, there is a linear decrease in the 

concrete conductivity. This is because increasing w/b made the concrete more porous, which was 

evident by the reduction in the measured dry density of the concrete samples. The k of composite 

materials like concrete is directly related to dry density. Previous studies have demonstrated that 

reduction in dry density could cause a corresponding decrease in the conductivity of concrete (ACI 

(American Concrete Institute) 2002; Ganjian 1990; Gencel et al. 2013; Morabito 1989; Nagy et al. 

2015; Tinker and Cabrera 1992; Zhu et al. 2015). Analyzing the measured data and trend, one can 

deduce that the thermal conductivity of a concrete mix with a 0.30 w/b is estimated to be 1.07 W/m-

K with a 95% confidence interval of (1.06, 1.08). For a 0.05 increase in the w/b ratio, the k value 

decreases by 0.074 W/m-K with a 95% confidence interval (CI) of (0.070, 0.078) on average. The 

proportion of variability in conductivity described by w/b ratio is approximately 96%.   

Effect of SCMs 

Five different concrete mixes with varying percentages of cement replacement by fly ash and 

GGBFS were used to analyze the effect of commonly used supplementary cementitious materials 

(SCMs) on k of concrete. Fly ash has been very commonly used in almost all types of concrete mixes 

these days either co-blended with the Portland cement or separately blended while concrete mixing. 

In this study, Portland cement in all four mixes (containing SCMs) was replaced with 20% (by weight) 

of class C fly ash. The measured thermal conductivity values of these concrete mixes are plotted in 

Fig. 6. The table inserted in the figure presents the 95% CIs for the measured mean k values of all the 

mixes. From the analysis and visualization of measured data, it can be inferred that the thermal 

conductivity of a concrete mix with no SCM replacement is estimated to be 1.24 W/m-K with a 95% 

confidence interval of (1.20, 1.28). For a unit increase in the SCM replacement percentage by weight 
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of cement, the k value decreases by 0.003 W/m-K with a 95% CI of (0.002, 0.005) on average. The 

proportion of variability in conductivity described by percentage SCM replacement is 75%. 

From Fig. 6 and the inferences presented above, it is evident that with an increase in the SCM 

replacement, there is a decrease in the k value of concrete. This can be explained by the fact that the k 

values of fly ash and slag pastes are lesser than that of cement paste and also the dry density of concrete 

mixes decreases with an increase in SCM replacement. As per the regression analysis performed by 

Choktaweekarn (2009) for developing a thermal conductivity model for concrete, the k of cement and 

fly ash was obtained to be 1.55 and 0.76 W/m-K, respectively. In a similar study on the effect of silica 

fume on paste conductivity, Fu and Chung (1999) concluded that silica fume was effective in 

decreasing conductivity of cement paste which can be due to its relatively low conductivity and low 

density of the paste containing silica fume. The trend of decrease in k in this study is also consistent 

with studies by other researchers (Choktaweekarn 2009; Demirboga and Gul 2003).  Although the 

reduction in k value is not very substantial here, it can be significant in the case of concrete mixes 

containing very high amounts of SCMs. 

Effect of Age of Concrete 

In this research, the k of concrete was measured at curing ages of 3, 7, 14, 28, and 56 days. 

Since the conductivity measurement method adopted in this study required a dry concrete specimen, 

it was not possible to measure the k of fresh concrete. Fig. 7 presents the measured values of the four 

mixes (shown in Table 3) at various ages. It is observed from Fig. 7 that the k of concrete decreased 

from 3 to 7 days, then increased from 7 to 28 days and became almost constant after that. The increase 

in k could be explained by the fact that with the increase in the degree of hydration, as hydration 

products are being formed, the overall porosity of concrete decreases, concrete becomes denser and 

therefore an increase in k occurs. In his study on k of paste and mortar, Choktaweekarn (2009) also 

observed a decrease in k after the age of about 3 days and almost negligible change after that, similar 

to the observations found in this research. However, conflicting arguments are found in literature about 
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the change in thermal conductivity with the degree of hydration (DOH) and the age of concrete 

(Breugel 1998; Brown and Javaid 1970; Choktaweekarn 2009; Schindler 2002). Van Breugel (1998) 

suggested an increase in conductivity with increasing DOH, while Schindler (2002) recommends a 

linear decrease of k with the DOH from 1.33 times the ultimate k to the ultimate k [𝑘𝑐(𝛼) =

⁡𝑘𝑢𝑐⁡(1.33 − 0.33𝛼), where kc is the concrete thermal conductivity (W/m-K), α is the degree of 

hydration, and kuc is the ultimate hardened concrete thermal conductivity]. Brown and Javaid (1970) 

measured k of fresh concrete starting at 6 hours up to 7 days and found a 30% decrease in k from its 

initial value during this period which remained constant after that. Further study is necessary to find 

out rational explanations for the effect of age on k of concrete.  

Effect of Fiber 

Fibers are primarily used in concrete to control cracking due to plastic and drying shrinkage 

(Mehta and Monteiro 2006; Neville 2011). However, depending on the type, content, geometry, 

orientation, and density, these also affect other properties of concrete. In this study, two types of fiber 

(steel and polypropylene) at four different volume fractions: 0.25, 0.5, 1, and 2% were used in concrete 

mixes as shown in Table 3. As the length-to-diameter ratio of fiber affects the properties of fresh as 

well as hardened concrete, this ratio was kept the same (l/d = 63.5) for both types of fiber. Fig. 8 shows 

the change in k of concrete with the addition of fiber. The table inserted in the figure also presents the 

95% confidence intervals for the measured mean k values.  

In the case of steel fiber, the k of concrete did not change at the fiber volume fraction (VF) of 

0.25%. However, the increase in k was observed when VF increased from 0.50% to 2%. This is 

probably related to the degree of percolation of fiber particles in the matrix. In general, percolation is 

a physical phenomenon in composite materials in which the highly conducting particles distributed 

randomly in a matrix form at least one continuous chain connecting the opposing faces of the matrix 

(Devpura et al. 2001). In fiber-reinforced concrete, it refers to the connectivity of fiber particles in the 

cement matrix which results in a continuous conductive path (Javier Baeza et al. 2010; Sun et al. 1998). 



www.manaraa.com

59 

 

 

 

 

 

Formation of such conductive path causes a steep increase in the thermal conductivity of concrete. The 

fiber volume fraction above which percolation occurs is known as the percolation threshold (Javier 

Baeza et al. 2010). In this study, the percolation threshold was 0.50% VF of steel fiber above which 

the degree of percolation increased resulting in a conductive network and a consequent increase in 

thermal conductivity of concrete.  

Statistical analysis of experimental data revealed that the thermal conductivity of a concrete 

mix with no steel fiber is estimated to be 1.05 W/m-K with a 95% confidence interval of (1.03, 1.08). 

For a unit percentage increase in the fiber volume fraction, the k value increases by 0.065 W/m-K with 

a 95% CI of (0.05, 0.08) on average. The proportion of variability in conductivity described by steel 

fiber VF percentage is 83%.  On the other hand, PP fiber did not show any substantial effect on the k 

of concrete, mainly because the fiber was not thermally conductive. These experimental observations 

can be explained by the fact that since the thermal conductivity of steel fiber is very high 

(approximately 45.0 W/m-K) as compared to other constituents of concrete, its addition increases the 

overall conductivity of concrete. Whereas the conductivity of polypropylene fiber being low, it does 

not increase the overall k of concrete. It is known that the use of fiber helps improve the post-cracking 

durability of concrete. However, the effectiveness of fiber depends also on how well-dispersed it is in 

the concrete. Therefore, in applications where conductive concrete is desired, such as mass concrete 

and heated pavement systems, the use of steel fiber could be explored. 

Effect of Lightweight Aggregate 

Use of lightweight aggregate in concrete is beneficial for a variety of reasons such as weight 

reduction, reduced early-age cracking, reduced permeability, and enhanced durability (ACI (American 

Concrete Institute) 2003; Cavalline et al. 2017; Newman and Owens 2003). Depending on the type of 

raw material (clay, shale or slate), and the process of thermal treatment, the porosity and other 

properties of lightweight aggregate are determined. In this study, expanded shale lightweight 

aggregates were used and three concrete mixes (shown in Table 3) were designed to analyze their 
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effect on the conductivity of concrete. These mix options included: (1) a control mix containing all 

normal weight limestone coarse aggregate (NW100), (2) a mix containing all lightweight expanded 

shale coarse aggregate (LW100), and (3) another mix containing 50% by volume of both 

(NW50+LW50). The bulk loose unit weights of limestone and expanded shale coarse aggregates used 

in the concrete mixes were 1570 kg/m3 (98 lb/ft3) and 877 kg/m3 (54.8 lb/ft3) respectively. The dry 

densities of the NW100, LW100, and NW50+LW50 concrete mixes were measured to be 2226 kg/m3 

(139 lb/ft3), 1626 kg/m3 (101 lb/ft3), and 1892 kg/m3 (118 lb/ft3) respectively. Fig. 9 shows the change 

in k of concrete with an increase in lightweight aggregate percentage. The table inserted in the figure 

also presents the 95% confidence intervals for the measured mean k values. It is observed that thermal 

conductivity decreases with increasing content of lightweight aggregate. The conductivity of a 

concrete mix with no LWA replacement is estimated to be 1.07 W/m-K with a 95% confidence interval 

of (1.03, 1.12). For a unit percentage increase in the LWA replacement, the k value decreases by 0.002 

W/m-K with a 95% CI of (0.001, 0.003) on average. The proportion of variability in conductivity 

described by steel fiber VF percentage is 88%. 

The reduction in conductivity is expected since the expanded shale aggregates have a porous 

structure which is also evident from the reduced dry density of concrete. The air gets trapped in these 

pores thereby reducing the density, weight, and overall conductivity of concrete. In their study also, 

Cavalline et al. (2017) observed a strong inverse relationship between thermal conductivity and total 

void content of lightweight aggregate concrete (R2 = 0.875). It shall be noted that the trend, shown in 

Fig. 9, is not linear. A reduction of approximately 30% in thermal conductivity is observed from that 

of NW100 to LW100, which is very significant. This property of lightweight aggregates could be used 

to enhance the insulation performance of concrete structures (i.e., especially buildings) thereby saving 

energy and cost. 
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Effect of Recycled Coarse Aggregate (RCA) 

Replacing natural aggregates (NA) with recycled aggregates (RA) from construction and 

demolition waste (C&D) has many advantages such as the conservation of natural resources, landfill, 

cost, etc. Many studies have been conducted to evaluate the mechanical properties of concrete 

containing RA (Ajdukiewicz and Kliszczewicz 2002; Anderson et al. 2009; Dhar et al. 2018; Duan et 

al. 2013a; Faysal et al. 2019; Gómez-Soberón 2002; Knaack and Kurama 2013; Kou and Poon 2013; 

Mahedi et al. 2018; Medina et al. 2014; Dos Santos et al. 2004). However, limited data are available 

on the thermal properties especially thermal conductivity of such concrete (Zhu et al. 2015). Unlike 

virgin NA, mortar attached with RA is known to affect properties such as shrinkage and creep of 

recycled aggregate concrete (Kou and Poon 2013; Xiao et al. 2010) and therefore it might also affect 

the thermal properties. Four concrete mixes, containing normal coarse aggregate replaced by RA at 

replacement levels of 0, 30, 50, and 100%, were analyzed as part of this study. The details of the mixes 

are presented in Table 3. The conductivity of mixes was measured and is presented in Fig. 10. The 

table inserted in the figure shows the 95% confidence intervals for the measured mean k values. Similar 

to the trend observed in the case of lightweight aggregate, the replacement of normal aggregate with 

recycled aggregate was also found to decrease the conductivity of concrete. The conductivity of a 

concrete mix with no RCA replacement is estimated to be 1.20 W/m-K with a 95% confidence interval 

of (1.19, 1.21). For a unit percentage increase in the LWA replacement, the k value decreases by 0.0034 

W/m-K with a 95% CI of (0.003, 0.004) on average. The proportion of variability in conductivity 

described by RCA replacement percentage is approximately 94%. 

The high absorption (7%) of RA used in this study suggests that the aggregate is more porous 

than the NA (0.61% absorption). Relatively high porous nature of RA can be attributed to the presence 

of mortar attached to the aggregate surface which itself is porous and also creates a weaker bond with 

the new mortar. Therefore, the replacement of NA with RA increased the overall porosity of the 

concrete, thereby decreasing its density and thermal conductivity. This inference is also supported by 
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the experimentally measured dry densities of four concrete mixes. The dry densities of concrete mixes 

with 0, 30, 50, and 100% RCA replacement were measured to be 2279 kg/m3 (142 lb/ft3), 2251 kg/m3 

(141 lb/ft3), 2153 kg/m3 (134 lb/ft3), and 2056 kg/m3 (128 lb/ft3) respectively. Hence, from the 

observations of this study, it can be inferred that even though by using recycled aggregates in concrete, 

the mechanical properties such as strength and elastic modulus are compromised, the thermal 

insulation potential of such a concrete mix is improved.  

Effect of Absorption of Aggregate 

Various agencies specify an upper limit on the absorption of aggregates to be used in concrete. 

At the same time, good quality aggregates (having less absorption) are depleting. This is increasing 

the need to explore even the use of aggregates having higher absorption values in concrete. This was 

one of the motivations to study the effect of absorption of aggregates on the thermal conductivity of 

concrete. To analyze this, five concrete mixes were prepared using limestone and dolomite aggregates 

with different absorption values. As the effect of absorption was desired, the same volume fractions 

of constituents of concrete were used for all five mixes. The mixes have been designated based on the 

type of aggregate and its percentage absorption (Table 3).  

The k of concrete mixes was measured, the results of which are presented in Table 5. Column 3 in 

Table 5 shows the mean value of measured k and column 4 shows the 95% confidence interval for the 

mean. From the measured values of conductivity, it is observed that even the absorption of dolomite 

aggregates used in this research is high, the k value of concrete containing dolomite is not lower than 

that containing limestone. This can be expected as the thermal conductivity of dolomite stone is often 

higher than that of limestone (Campbell-Allen and Thorne 1963; Neville 2011; Robertson 1988). As 

far as the effect of absorption of aggregates on k of concrete is concerned, for limestone aggregates 

with absorption value up to 3.5%, no significant change in k of concrete is observed. However, for 

dolomite aggregates, the k of concrete reduces by approximately 21% when absorption of dolomite 

increased from 4.1 to 6.8%. Due to unavailability of dolomite aggregates with higher absorption 
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values, further tests could not be performed in the present study, and therefore, it would be premature 

to make a definite statement at this time based on only two observations. Further tests would need to 

be performed to reach a definitive conclusion. 

General Discussion 

Various parameters related to concrete were analyzed in this study for their effects on the 

thermal conductivity of concrete. The parameters included water-binder ratio, SCM replacement, age, 

PP and steel fiber, and lightweight, recycled, and normal weight absorptive aggregates. Table 6 

presents the range of values of these parameters and k values of concrete mixes corresponding to 

them. These values are also plotted in Fig. 11 where the arrows represent the effect 

(increasing/decreasing) of parameters on conductivity. It can be observed that an increase in w/b, 

SCM, LWA, and RCA replacement reduced the k of concrete while the increase in steel fiber had the 

opposite effect. Thermal conductivity of concrete changed differently with age, as discussed earlier. 

It can also be said that amongst all the parameters, the effect of age (on k) appeared more pronounced 

probably because of changing cement hydration characteristics with age.  

As dry density and strength are frequently and easily measured properties of concrete, their 

relationship with thermal conductivity can be a useful tool. The measured k values of various concrete 

mixes, corresponding to all the parameters presented earlier, were plotted against their oven-dry dry 

densities and 28-day compressive strengths as shown in Fig. 12 (a) and (b), respectively. The 

trendlines plotted in these figures show the statistical relationships between the dependent variable 

(k) and the independent variable (density and strength). The best-fit relationships to explain the 

variability in k as a function of dry density and compressive strength were found to be exponential 

and linear, respectively. Thermal conductivity, k, was found to increase exponentially with an 

increase in the dry density of concrete while a linear increase in k was observed with an increase in 

the compressive strength. Using higher-order polynomial functions can furnish a relationship with 

better performance on statistical evaluation parameters, however, physical justification of these 



www.manaraa.com

64 

 

 

 

 

 

functions will be difficult. Therefore, linear and exponential relationships were adopted in this study. 

Considering all data points (70), the coefficient of determination (R2) values of 0.6116 and 0.6005 

were obtained respectively for the best-fit exponential and linear functions. However, the data points 

corresponding to the effect of w/b seemed outliers for both the functions and their removal from the 

model increased R2 values to 0.7905 and 0.7155, respectively (Fig. 12). The reason for these data 

points being outliers might be the use of recycled coarse aggregate in concrete to analyze the effect 

of water-binder ratio. Although the obtained R2 values are relatively low, since the data used for 

developing the relationships considered a wide range of concrete mixes designed by varying 

parameters such as water-binder ratio, SCMs, fiber, lightweight, recycled and absorptive aggregates, 

the presented relationships can be used for prediction of k of concrete mixes containing similar 

materials.  

Conclusions  

The experimental method employed in this study allows the test to be performed on a 

frequently used cylindrical concrete specimen with minimal preparation, and therefore it is a 

convenient test procedure to measure the thermal conductivity of concrete. Specific findings from 

this research were as follows: 

(1) Thermal conductivity of the concrete decreases almost linearly with an increase in w/b. 

(2) SCMs replacement for cement reduced the thermal conductivity of concrete, and the reduction is 

more at the early age ( 14 days) than at the later age (after 28 days). 

(3) The thermal conductivity of concrete was found to decrease during the initial period of curing, 

from 3 to 7 days, but increased afterward as curing continued up to 28 days. After 28 days, thermal 

conductivity of concrete had little change.  

(4) Addition of steel fiber (0.25 to 2% volume fraction) in concrete increased its thermal conductivity 

whereas the addition of PP fiber had little effect on concrete thermal conductivity. 
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(5) Properties of aggregate have a significant effect on concrete thermal conductivity. The 

conductivity of concrete reduced by approximately 20% as absorption of dolomite increased from 

4.1 to 6.8%.  A 100% substitution of normal weight limestone aggregates with expanded shale 

lightweight aggregates reduced the thermal conductivity of concrete by approximately 30%. 

Replacing normal coarse aggregate with recycled coarse aggregate also reduced the conductivity 

of concrete by approximately 33%. 

(6) Thermal conductivity of concrete was found to increase exponentially and linearly with an 

increase in its dry density and compressive strength, respectively.  
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Figures 

 

Fig. 1. Effect of k on temperature development in a mass concrete member 

 

 

Fig. 2. Gradations of coarse aggregates used  
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Fig. 3. Sample preparation for conductivity experiment: (a) 1” thick iron disks; (b) 0.5” diameter 

rod holding disks together; (c) sample after demoulding 

  

  

  

 
  

Fig. 4. Thermal conductivity test setup and typical test results 

(a) test setup, (b) sensor locations, and (c) typical test results 
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Fig. 5. Effect of water-binder ratio on k of concrete 

 

 

 
Fig. 6. Effect of SCMs on k of concrete 
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Fig. 7. Effect of age on k of concrete 

 

 

 

Fig. 8. Effect of fiber on k of concrete 
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Fig. 9. Effect of lightweight aggregate on k of concrete 

 

 

 

 

Fig. 10. Effect of recycled aggregate on k of concrete 
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Fig. 11. Effect of all paramaters on conductivity of concrete 
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Fig. 12. Thermal conductivity relationships  

(a) with dry density and (b) with compressive strength 
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Tables 

 

Table 1. Chemical Composition, Blaine, and Specific Gravity of Tested Cementitious Materials  

 
Oxide (%) Cementitious material 

I/II IP (25) IS (20) C Fly ash GGBFS 

SiO2 20.05 31.00 23.27 36.09 38.8 

Al2O3 4.34 8.72 5.47 18.83 7.91 

Fe2O3 3.05 3.92 2.76 5.85 0.49 

CaO 63.18 46.2 59.44 25.85 38.37 

MgO 2.24 2.68 3.80 5.76 10.64 

SO3 3.18 3.33 3.15 1.58 2.54 

Na2O 0.09 0.24 0.12 1.78 - 

K2O 0.68 0.84 0.62 0.48 0.43 

Others 0.85 0.62 0.80 3.44 0.82 

LOI 2.55 2.20 0.56 0.34 - 

Blaine (m2/kg) 376 503 389 483 597 

Specific gravity 3.14 2.99 3.08 2.62 2.89 

 

 

Table 2. Properties of Coarse Aggregates used 

Type of aggregate Nominal maximum 

size (in.) 

SSD specific 

gravity 

Absorption 

(%) 

Normal weight 

Normal weight  

1 2.64 0.61 

1/2 2.63 1.13 

Lightweight 1/2 1.15 25.00 

Recycled Concrete 3/4 2.12 7.06 
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Table 3. Concrete Mix Proportions by Volume Fraction of Constituents 

 
 

Desired 

Effect of 

 

Mix Designation 

Water-

binder 

ratio 

Volume Fraction (%)  

Particulars Water Cement Fly 

Ash 

GGBFS Coarse 

Aggregate 

Fine 

Aggregate 

Fiber 

 

Water-

binder 

Ratio 

w/b-0.35  0.35 12 11 0 0 46 31 0  

Recycled coarse aggregate w/b-0.45  0.45 16 11 0 0 44 29 0 

w/b-0.50  0.50 17 11 0 0 43 29 0 

w/b-0.55  0.55 19 11 0 0 42 28 0 

 

 

SCMs and 

Age 

Control-SCM 0.43 15 12 0 0 34 34 0   

20%FA 0.43 15 9 3 0 34 34 0   

45%FA 0.43 15 7 5 0 34 34 0   

20%FA+20%Slag 0.43 15 7 3 2 34 34 0   

20%FA+30%Slag 0.43 15 5 3 4 34 34 0   

 

 

Fiber 

F0.00 (Control) 0.40 15.7 10 3 0 32 32 0   

F0.25 0.40 15.7 10 3 0 32 32 0.25   

F0.50 0.40 15.7 10 3 0 32 32 0.50   

F1.00 0.40 15.7 10 3 0 32 32 1.00   

F2.00 0.40 15.7 10 3 0 32 32 2.00   

 

Lightweight 

Aggregate 

NW100 0.40 15.7 10 3 0 32 32 0   

LW100 0.40 15.7 10 3 0 32 32 0   

LW50+NW50 0.40 15.7 10 3 0 32* 32 0 *16%NW+16%LW 

 

Recycled 

Aggregate 

RA0 0.45 16 11 0 0 36.5 36.5 0   

RA30 0.45 16 11 0 0 36.5** 36.5 0 **25.5%NA+11%RA 

RA50 0.45 16 11 0 0 36.5*** 36.5 0 ***18.25%NA+18.25%RA 

RA100 0.45 16 11 0 0 36.5 36.5 0   

 

Absorption 

of 

Aggregate 

L0.7 0.43 15 9 3 0 34 34 0   

L2.9 0.43 15 9 3 0 34 34 0 L: Limestone 

L3.5 0.43 15 9 3 0 34 34 0 D: Dolomite 

D4.1 0.43 15 9 3 0 34 34 0  

D6.8 0.43 15 9 3 0 34 34 0  
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Table 4. Fresh and Hardened Properties of Concrete Mixes 

 
Mix Designation Slump, mm 

(in.) 

Air content  

(%) 

Unit weight, kg/m3 

(lbs./ft3) 

28-day f’c, MPa (psi) 

w/b-0.35  38.1 (1.5)   

NA 

2209 (137.8) 43 (6193) 

w/b-0.45  50.8 (2.0) 2183 (136.3) 42 (6106) 

w/b-0.50  50.8 (2.0) 2198 (137.2) 37 (5352) 

w/b-0.55  88.9 (3.5) 2204 (137.6) 35 (5105) 

Control-SCM 50.8 (2) 5.5 2377 (148.4) 55 (7922) 

20%FA 76.2 (3) 5.5 2359 (147.2) 54 (7839) 

45%FA 63.5 (2.5) 6.0 2358 (147.2) 53 (7662) 

20%FA+20%Slag 63.5 (2.5) 6.0 2345 (146.3) 51 (7411) 

20%FA+30%Slag 63.5 (2.5) 6.5 2347 (146.5) 53 (7726) 

Control-F 76.2 (3.0) 6.0 2319 (144.8) 41 (6002) 

F0.25 44.4 (1.75) 6.8 2323 (145.0) 41 (5903) 

F0.50 44.4 (1.75) 6.0 2316 (144.6) 45 (6584) 

F1.00 38.1 (1.5) 7.2 2342 (146.2) 45 (6515) 

F2.00 38.1 (1.5) 7.5 2352 (146.8) 49 (7095) 

NW100 76.2 (3.0) 6.0 2319 (144.8) 41 (6002) 

LW100 127 (5.0) 7.7 1573 (98.2) 33 (4822) 

LW50+NW50 88.9 (3.5) 6.6 1690 (105.5) 34 (4964) 

RA0 50.8 (2.0)  2393 (149.4) 41 (5921) 

RA30 38.1 (1.5) NA 2355 (147.0) 34 (4894) 

RA50 38.1 (1.5)  2285 (142.6) 30 (4311) 

RA100 38.1 (1.5)  2168 (135.3) 28 (4023) 

L0.7 88.9 (3.5) 6.5 2380 (148.6) 41 (5963) 

L2.9 88.9 (3.5) 7.2 2371 (148.0) 42 (6133) 

L3.5 101.6 (4.0) 7.0 2331 (145.5) 44 (6403) 

D4.1 88.9 (3.5) 7.2 2339 (146.0) 43 (6270) 

D6.8 101.6 (4.0) 7.5 2342 (146.2) 40 (5810) 

Note: NA indicates that the property was not measured. 
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Table 5. Conductivity of Concrete Containing Aggregates with Different Absorption 

 
Type of 

aggregate 

Absorption  

(%) 

Measured mean 

‘k’ (W/m-K) 

95% CI for mean ‘k’ 

(W/m-K) 

 

Limestone 

0.7 0.86 (0.83,0.89) 

2.9 0.88 (0.82,0.94) 

3.5 0.87 (0.84,0.90) 

 

Dolomite 

4.1 1.20 (1.14,1.26) 

6.8 0.94 (0.92,0.96) 

 

 

Table 6. Studied Parameters and Obtained k Values 

 

Parameter Unit Range of parameter 

values 

Range of concrete k 

 (W/m-K) 

Age Day 3 – 7 - 28 0.70 – 0.60 - 1.20 

SCM Repl. % 0 - 50 1.23 - 1.09 

NWA Abs. % 0.7 - 4.1 - 6.8 0.86 – 1.20 – 0.94 

Steel fiber Vol. fraction 0 - 2 1.05 - 1.18 

PP fiber Vol. fraction 0 - 2 1.05 - 1.07 

LWA Repl. % 0 - 100 1.05 - 0.77 

RCA Repl. % 0 - 100 1.20 - 0.86 

w/b Ratio 0.35 - 0.55 0.99 - 0.70 
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CHAPTER 4.    PREDICTING THERMAL CONDUCTIVITY OF CONCRETE USING 

MACHINE LEARNING ALGORITHMS 

Modified from a manuscript submitted to ACI Materials Journal 

Yogiraj Sargam1, Kejin Wang2, In Ho Cho3

 

Abstract 

Thermal conductivity, k, is an important property of concrete and it influences the design 

and energy-efficiency of many concrete-based structures. Due to the requirement of sophisticated 

test procedures, experimental measurement of k of concrete for every such structure is impractical. 

In this context, a model for prediction of k is demanded. For this purpose, 217 data points of k 

measurements were collected, and nine machine learning (ML) algorithms of function, tree, and 

ensemble-learning based categories were evaluated in this study. The database for training these 

algorithms was developed from published articles. Manual, Naïve, and fractional hot-deck 

imputation (FHDI) methods for curing missing values were applied and compared. Various feature 

selection tools, such as the mean decrease in impurity (MDI) and principal component analysis 

(PCA), were evaluated, and the results revealed that the mineralogy of coarse and fine aggregate 

and the dry density of concrete are the two most influential parameters of concrete thermal 

conductivity. Out of the nine ML algorithms, the predictive performance of artificial neural 

network (ANN) was the best. The hyperparameters of ANN were further tuned to optimize the 
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prediction accuracy, and a 14-6-1 ANN architecture was developed. Combining the performance 

on training and test dataset, a good match in the actual and ANN model predicted values of thermal 

conductivity was obtained with R2 of 0.9079 and MSE of 0.0027. The model also performed 

reasonably well on an independent test set developed from laboratory-measured thermal 

conductivity of 18 concrete mixes. Overall, the ANN model was found to be robust in its 

predictions of thermal conductivity of concrete and is proposed to be an adequate ML tool for this 

purpose. 

Keywords: Concrete – Thermal Conductivity – Missing Data – Machine Learning – ANN 

Introduction 

Thermal conductivity, k, is one of the important thermal properties of concrete that governs 

heat transfer. It is defined as the constant of proportionality between the heat flux and temperature 

gradient. The factors affecting the thermal conductivity of concrete include mineralogical 

characteristics of aggregate, the weight of constituents, and the density, moisture,  and age of 

concrete (Breugel 1998; Campbell-Allen and Thorne 1963; Khan 2002; Marshall 1972; Schindler 

2002). Since approximately 50-70% volume of concrete is often occupied by aggregates, the 

mineralogy and volume of aggregates in a concrete mix have the most influence on its 

conductivity. The dry density of concrete also shows a dominant effect on k. A direct relationship 

between dry density and k of concrete has been suggested by many researchers, while some have 

shown an exponential relationship (ACI (American Concrete Institute) 2002; Tinker and Cabrera 

1992; Valore 1980). 

A wide range of k values of concrete can be found in literature largely because different 

researchers might have used different test methods and materials. Lee et al. (2012) and Cavalline 

et al. (2017) presented a summary of published k values ranging from 0.7 to 2.6 W/m-K. Default 
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k values used in the various design and temperature prediction software are also different. For 

example, AASHTOware PaveME (AASHTO 2013) has a default global value of 2.16 W/m-K for 

concrete pavements. On the other hand, the adiabatic temperature rise prediction computer 

program, ConcreteWorks (Folliard et al. 2017), uses a default value of 2.7 W/m-K. Based on dry 

density, several publications suggested k values for concrete used in various engineering 

applications. A few mathematical (Campbell-Allen and Thorne 1963) and Artificial Neural 

Network (ANN) (Lee et al. 2012) models have also been developed for predicting k of concrete. 

However, the set of data used by Lee et al. (2012) to train the ANN model was taken from previous 

studies by other researchers who did not use many materials used in concrete nowadays such as 

slag, lightweight aggregates, fibers, and others. That is, many published prediction models are not 

updated to modern concrete materials, which often contain various supplementary cementitious 

materials (SCMs), different types of aggregates, and additives (e. g., fibers). 

Depending on the application, concrete with a low or high k value can be desired in various 

structures such as floors with embedded heaters, large foundations, dams, and others (Gui et al. 

2007; Sargam et al. 2018; Schindler 2002). The k value of concrete is often required for the 

prediction of heat development in mass concrete structures, such as foundations and pavements. It 

has been shown in the literature that increasing k value can reduce the probability of early-age 

thermal cracking in a mass concrete element (Poole et al. 2006; Riding et al. 2013; Sargam et al. 

2019). An accurate prediction of k in such cases becomes important in order to minimize the 

cracking and to improve the durability and serviceability of the structure.  

In light of the above discussions, it can be said that there is a need to develop a prediction 

model for thermal conductivity of modern concrete. In recent years, the use of machine learning 

(ML) for predictive analytics has grown in many fields including civil engineering. ML techniques 
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have been used in many applications of concrete such as structural health monitoring and damage 

detection (Farrar and Worden 2013; Neves et al. 2017; William et al. 2015; Worden and Manson 

2007), predictions of compressive strength (Atici 2011; Chithra et al. 2016; Chou et al. 2011; 

Deshpande et al. 2014; Duan et al. 2013b; Naderpour et al. 2018; Omran et al. 2016; Trocoli et al. 

2013; Young et al. 2019), elastic modulus (Sadati et al. 2019), carbonation depth (Zewdu Taffese 

et al. 2015), chloride resistance (Marks et al. 2015), and durability assessment (Taffese and 

Sistonen 2017). The use of ML, however, has been limited for predictions of thermal properties of 

concrete. In this study, a database of k values was developed from published articles and various 

ML algorithms were evaluated for their k prediction performances. Different sets of input variables 

and tuning of hyperparameters of ML algorithms were tried to optimize the prediction accuracy. 

A robust ANN model was developed using the database, and the model was also validated on an 

independent/unseen test set.  

In this article, a general outflow of various machine learning algorithms evaluated in this 

study is presented first. The development of databases for training and independent testing of 

algorithms is then discussed. A step-by-step procedure of the development of thermal conductivity 

prediction model is summarized thereafter. Next, the performance of various algorithms on 

different parameters is compared and the development of the best performing model by tuning of 

hyperparameters is presented.  

Machine Learning Algorithms 

Machine learning (ML) algorithms provide techniques to recognize patterns in a dataset 

and make predictions based on them. Their popularity in various fields is featured to the fact that 

even without a deep understanding of the algorithms, performance-based predictive models can be 

developed from empirical data (Kuhn and Johnson 2013; Young et al. 2019). ML is categorized 
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as supervised, unsupervised, semi-supervised, and reinforcement learning. Supervised and 

unsupervised learning are the most widely used types of ML techniques in many fields of 

application (Murphy 2018). The goal of a supervised learning algorithm is to achieve low bias and 

low variance errors. This algorithm works on a database that has input instances as well as the 

desired outputs and the learning is supervised by a “teacher” (Kuhn and Johnson 2013). On the 

other hand, the outputs are not available in the unsupervised algorithm. It devises and presents the 

patterns in the data on its own (Taffese and Sistonen 2017). In this study, supervised learning 

algorithms were evaluated and WEKA (Waikato Environment for Knowledge Analysis) computer 

program (Frank et al. 2016) was used for this purpose. The thermal conductivity value to be 

predicted was numerical and therefore only regression algorithms were considered. Three broad 

categories of regression algorithms, based on function, tree, and ensemble-learning, were 

evaluated. A brief overview of these categories of algorithms is presented in the following sub-

sections.  

Function-based 

Function-based algorithms evaluated in this study were linear, Gaussian process, and 

nonlinear regression. Nonlinear regression algorithms consisted of ANN and support vector 

regression. 

In simple terms, linear regression is a model that assumes a linear relationship between the 

response and explanatory variables. The general form of a multiple linear regression model is as 

follows [Eq. (1)]: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜖, 𝜖⁡~⁡𝑁(0, 𝜎2)  (1) 
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Where y is a response/dependent variable, x’s are explanatory/independent variables, β’s are 

coefficients/unknown parameters, and ε is the error. The explanatory variables in the model can 

also have higher-order terms and/or interaction amongst them. The model optimizes the values of 

coefficients such that the sum of the squared errors (SSE) is minimized. A linear regression model 

makes several assumptions such as the normal distribution, constant variance, and independence 

of errors, linear relationship between the expected response and the explanatory variables and 

others. The acceptance of a model can only be valid if the assumptions hold true. Although the 

linear regression models are simple in interpretation and implementation, they furnish poor 

predictions if the relationship between response and explanatory variables cannot be approximated 

by a linear function (Rasmussen and Williams 2006). Unlike a linear regression model where the 

error variance and coefficients are estimated from the data, a Gaussian process regression (GPR) 

model explains the response by introducing latent variables from a Gaussian process and explicit 

basis functions. A Gaussian process is a collection of random variables, any finite number of which 

have a joint Gaussian distribution (Rasmussen and Williams 2006). More details about the GPR 

model can be found elsewhere (Dattagupta 2013; MacKay 1998; Omran et al. 2016; Rasmussen 

and Williams 2006; Seeger 2004; Witten et al. 2016).  

ANN is a non-linear computing algorithm inspired by the structure and functioning of a 

biological neural network (Dasgupta et al. 2018; Grossi and Buscema 2007; Jain et al. 1996; Tino 

et al. 2015). An ANN model develops an input-output relationship via a series of connected 

neurons (I. et al. 2019a; b; Kuhn and Johnson 2013). A typical ANN is composed of three building 

blocks: (1) input neurons representing explanatory variables; (2) output neurons representing 

response variable(s); and (3) hidden layer(s) that connects the input and output neurons and also 

represents the connection weights. Schematic of a typical ANN architecture can be found in many 
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published resources (Chou et al. 2011; Dasgupta et al. 2018; Grossi and Buscema 2007; Jain et al. 

1996; Tino et al. 2015; Young et al. 2019). Each neuron in an ANN architecture consists of inputs, 

weights, transfer/activation function, and output. Weight determines the influence of a feature on 

the output. The mathematical relationship between the input variables and each neuron in the 

hidden layer is commonly expressed as shown in Eq. (2) (John Lu 2010; Young et al. 2019). 

ℎ𝑖 = ⁡𝜎⁡(𝑤𝑖
𝑇𝑥) (2) 

Where, x = [x1, x2, …, xn]
 T is the vector of n input variables (features), wi = [wi,1, wi,2, ……, wi, 

n]
T are the weights for each feature, and σ is an activation function. A range of activation functions 

such as linear, sigmoid, hyperbolic tangent sigmoid and others, are used. The sigmoid function is 

the most commonly used in regression problems and since this study dealt with the prediction of 

the numerical value of thermal conductivity, the sigmoid function was used. The general form of 

the function is as presented in Eq. (3) (John Lu 2010; Young et al. 2019). The neurons in the output 

layer are also related to those in the hidden layer through a linear function.  

𝜎⁡(𝑤𝑖
𝑇𝑥) =

1

1+𝑒𝑤𝑖
𝑇𝑥
⁡ (3) 

Another major step involved in an ANN architecture is the training of the network which 

is done using algorithms that adjust the connection weights and minimizes the prediction error. 

Some of the commonly used training algorithms in ANN are Levenberg-Marquardt, gradient 

descent, gradient descent with momentum, gradient descent momentum and adaptive learning rate, 

and gradient descent with adaptive learning rate (Brownlee 2016). The parameters of an ANN 

architecture should be well-optimized to avoid overfitting as architectures that have a large number 

of hidden layers and/or hidden neurons in each layer are prone to over-fitting.  
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Support Vector Regression (SVR) is based on a kernel trick, that implicitly creates a high-

dimensional feature space and models linear relationships in this space (Cristianini and Shawe-

Taylor 2000; Witten et al. 2016). A kernel defines the similarity or distance between new data and 

the support vectors. The models are produced in terms of a few support vectors. Unlike linear 

regression that finds parameter estimates by minimizing SSE, SVR uses ε loss function (ε-

insensitive function) that seeks to minimize the effect of outliers on the regression equations 

(Cristianini and Shawe-Taylor 2000; Kuhn and Johnson 2013). A cost parameter is introduced that 

penalizes large residuals and is set by the user. SVR aims to find a line of best fit that minimizes 

the error of the cost parameter. The SVR coefficients minimize the expression shown in Eq. (4) 

(Kuhn and Johnson 2013). 

𝐶𝑜𝑠𝑡⁡ ∑ 𝐿∈⁡(𝑦𝑖
𝑛
𝑖=1 − 𝑦̂𝑖) +⁡∑ 𝛽𝑗

2𝑃
𝑗=1  (4) 

Where ‘n’ is the number of data points, ‘P’ is the number of features, yi is the ith observed value of 

the outcome (i = 1….n), 𝑦̂𝑖 is the predicted outcome of the ith data point (i = 1….n), β is the model 

coefficient, Lε (.) is the ε loss function and Cost is the parameter that penalizes large residuals. 

More detailed information on SVR can be found in the literature (Chou et al. 2011; Chou and Tsai 

2012; Cristianini and Shawe-Taylor 2000; Kuhn and Johnson 2013; Omran et al. 2016; Witten et 

al. 2016).  

Tree-based 

Random forest, random tree, and reduced error pruning (REP) tree were tree-based 

algorithms evaluated on the dataset. Unlike function-based algorithms that use mathematical 

functions or relationships to identify the pattern in the dataset and develop prediction models, tree-

based algorithms perform this task through a “divide-and-conquer” approach (Witten et al. 2016). 
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The tree identifies splits in the data and uses a simple function to develop a prediction model. 

Classification and Regression tree (CART) is one of the most commonly used methodologies for 

constructing regression trees (Breiman et al. 1984). Starting with the entire training dataset, CART 

algorithm searches every distinct value of every predictor to find the split value that divides the 

data into two groups thereby minimizing the overall SSE and developing a final random tree (Kuhn 

and Johnson 2013). Random forest constructs a number of trees at the training time and furnishes 

the mean prediction of all the trees. Compared to a single tree, the generalization error and 

overfitting are minimized in a Random forest (Breiman 2001). A REP tree algorithm works by 

dividing the training dataset into two parts- a growing set and a pruning set. The growing set is 

used to form a rule, then a test is deleted from the rule, and the effect is evaluated by trying the 

reduced rule on the pruning set (Frank et al. 2016; Witten et al. 2016). The generated regression 

tree is pruned back by using reduced error with back fitting methodology (Omran et al. 2016; 

Witten et al. 2016).  

Ensemble Learning-based 

Ensemble learning algorithms applied in this study were bagging and additive regression. 

These algorithms function by combining the output of several different models with an aim to 

improve predictive performance (Opitz and Maclin 1999). Bagging is one of the earliest ensemble 

learning algorithms that uses bootstrapping along with any regression model to develop an 

ensemble (Breiman 1996; Kuhn and Johnson 2013). The bootstrapping method employed in this 

algorithm reduces the variance and stability of the prediction (Kuhn and Johnson 2013; Witten et 

al. 2016). Additive regression is a gradient boosting technique that implements forward stagewise 

additive modeling. At first, a standard regression model is built on the original data set, and then 

the successive models are trained in such a way that these models correct for the residual errors 
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from the previous model (Erdal 2013; Omran et al. 2016; Witten et al. 2016). However, this 

algorithm is prone to overfitting. 

Methodology 

Development of Database  

The predictive performance of an ML model depends on the training dataset up to a great 

extent. As discussed earlier, thermal conductivity of concrete is influenced by a number of factors 

which certainly needs to be considered in the model training dataset. In this study, a comprehensive 

literature review was carried out to develop a database of 217 data points from various relevant 

articles published from 1988 to 2018 [25,26,27–34,35–38]. Since the objective was to develop a 

model using k value of concrete containing modern constituent materials (e.g. – various SCMs, 

fiber, lightweight aggregates, and others), only past 30 years of data were collected. Also, for 

modeling purpose, it was required to minimize the number of missing values that led to the 

omission of some dataset. The developed database is shown in Table 1 (Note: wx refers to the unit 

weight of ingredient ‘x’ in the concrete mix). A total of 18 factors (also called features for modeling 

purpose) were considered that affected k of concrete, out of which 14 features were numerical and 

rest 4 were categorical. Numerical features included (I) concrete: dry density, temperature, age,  

and compressive strength; (II) paste: water-to-binder ratio, and unit weights of cement, fly ash, 

slag, silica fume, other SCMs, and water; and (III) aggregates and additives: fine aggregate, coarse 

aggregate, and fiber. Categorical features consisted of moisture condition of concrete, and types 

of fiber, coarse, and fine aggregate in the concrete mix. The minimum, maximum, mean, and 

standard deviation of each of the numerical features are presented while the categorical features 

are shown with their corresponding variables (in Table 1). Thermal conductivity values lied in the 

range of 0.20 - 4.18 W/m-K with a standard deviation of 0.60 W/m-K. The temperature at which 



www.manaraa.com

90 

 

 

 

 

 

k is measured is one of the most important features and therefore, temperature data collected in 

this study lied from 20 – 1000 °C that included usually encountered ambient as well as high and 

elevated temperatures. Another significant feature is the moisture condition of concrete in which 

k is measured. Dry and saturated conditions were considered in database development. Categories 

of fine aggregates (FA) evaluated were silica, quartz, lightweight, and recycled sand, and FA 

containing natural river sand as well as recycled concrete aggregates (RCA). Mineralogy of coarse 

aggregate (CA) is also known to greatly impact k of concrete. Limestone, carbonate, siliceous, 

crushed stone, granitic gneiss, gravel, basalt, siltstone, quartzite, lightweight, recycled, and CA 

containing virgin as well as RCA were the categories of coarse aggregates included in the dataset. 

An independent dataset (called as a testing dataset) was used for evaluating the predictive 

performance of the ML model. The testing dataset, containing 60 points, was developed from an 

experimental study conducted on 18 concrete mixes to measure their k values (Sargam et al. 2019). 

A steady-state test method performed on dry cylindrical concrete specimens (proposed by Carlson 

et. al (2010)), was followed for k measurement. All measurements were done in a closed room 

where temperature and humidity variations were negligible. The temperature during the tests was 

21-23 °C. The concrete mixes consisted of different water-binder ratios, cements of ASTM C150 

Type I/II, Type IP (25), and Type IS (20), ASTM C618 Class C and F fly ashes, and grade 100 

ground granulated blast furnace slag. The replacement dosage of SCMs (fly ash and slag) ranged 

from 20 to 50%. All mixes constituted siliceous river sand as fine aggregate whereas limestone, 

lightweight (expanded shale), and recycled aggregates were used as coarse aggregates in various 

mixes. Some of the mixes also consisted of steel fiber in the range of 0 to 2% volume fraction (0-

18.16 kg/m3 by weight). Similar to the data presented in Table 1, the features of the developed 

testing dataset and their minimum, maximum, mean, and standard deviation values are presented 
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in Table 2. As shown in Table 2, the water-binder ratio of concrete mixes ranged from 0.35 to 

0.55, dry density lied in the range of 1621 to 2281 kg/m3, and the range of compressive strength 

was from 29 to 55 MPa. This suggests that the dataset included concrete mixes of normal strength 

and normal weight as well as high strength and lightweight. 

Development of k Prediction Model 

The development of an ML algorithm-based prediction model involves a series of steps to 

be followed. A flow chart of the steps, applied in this study, is shown in Fig. 1 and the steps are 

also explained below.  

Data pre-processing: For building a robust ML model, data visualization and pre-processing is 

the first and a very important step. Data pre-processing includes processing of missing data, data 

normalization, and data partitioning. The presence of missing values in a training dataset can 

influence the performance of the model and hence these need to be cured before training the model. 

A recent comparative study showed that inaccurate missing data-curing method may result in 

several fold larger error in the subsequent ML predictions (Song et al. 2019). As the training dataset 

in this study was developed from previously published articles (Table 1), some of the features of 

the dataset contained missing values. These features were dry density, temperature, and 

compressive strength containing 15.20, 9.67, and 8.75% missing values, respectively. Imputation 

is one of the commonly used methods of curing missing or incomplete data. In this study, three 

different approaches to data curing were evaluated. These approaches are discussed below: 

(1) Manual curing – In this method, the missing values of dry density, temperature, and strength 

were imputed with their corresponding values from similar concrete mixes in the training 

dataset. This was based on the visualization of the trends in the values of the three features 
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with a change in thermal conductivity. One of the drawbacks of this method, however, can be 

the presence of artificially similar values that might adversely impact the predictive 

performance of a model.  

(2) Naïve method – In the Naïve missing data curing method, missing values are deleted or 

replaced with some statistics of the observed data corresponding to a particular feature. When 

mean values are used, all missing values were replaced with a constant mean value. However, 

since the thermal conductivity of concrete is sensitive to changes in the values of the features 

(dry density, temperature, and compressive strength), applying this method might result in a 

non-representative training dataset, especially if the proportion of missing data is large.  

(3) Fractional Hot-Deck Imputation (FHDI) – FHDI, established by Kim et al. (Kwang Kim and 

Fuller 2004), replaces the missing value (called recipient) with a set of imputed values based 

on observed responses from similar data points (called donors). Amongst several variants, the 

method used in this study is the two-phase sampling approach proposed by Im et al. (2015) 

capable of curing multivariate missing data with arbitrary missing patterns. The imputation is 

carried out in four steps: cell construction by discretization following the finite mixture model, 

estimating cell probabilities using the modified expectation maximization (EM) algorithm, 

constructing fractional weights and subsequent imputation, estimating variance using the 

Jackknife method (Im et al. 2018). In the first phase, each missing unit contains at least 5 

possible donors. In the second phase, each recipient is assigned with a set of donors with the 

associated fractional weights (Im et al. 2018). The FHDI package in R [69] was used for this 

imputation procedure. 
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The dataset cured using the above-mentioned three procedures was used to train models 

corresponding to various ML algorithms. The procedure that furnished the highest prediction 

accuracy was then selected as the data curing method for further model improvement.  

The training dataset (Table 1) included a few features that contained values in a wide 

different range. For example, the water-binder ratio lied in the range of 0.25 to 0.62 whereas the 

range of dry density was from 1434 to 2390 kg/m3. Clearly, these two features were in very 

different ranges. Using the data as-it-is might have affected the weights and biases of features in 

an ML model (especially ANN). Therefore, the normalization technique was applied that puts all 

features on a common scale. All numeric values in the training dataset were normalized to be in 

the range [0, 1]. 

Some of the commonly used methods of data partitioning in ML are – (1) splitting the 

dataset into training (around 70-80%) and test set (around 20-30%); (2) holdout; and (3) k-fold 

cross-validation. For evaluating various ML algorithms, k-fold cross-validation method was used 

in this study. In this method, the data are divided into k subsets, one of which is used as the 

test/validation set while the remaining k-1 subsets are used as the training set. k trials of the process 

are performed, and the model performance is averaged over all trials thereby reducing the bias. 

From the studies by researchers, it is known that ten-fold cross-validation yields the optimal 

computational time and reliable variance (Chou et al. 2014; Chou and Tsai 2012; Kohavi 1995), 

and therefore, this method was applied.   

Performance measures: In order to evaluate the predictive performance of the ML regression 

algorithms and to make comparisons amongst them, three statistical performance measures (R, 

MAE, and RMSE) were used. Their mathematical formulae are presented in Equations 5-7.  



www.manaraa.com

94 

 

 

 

 

 

Linear Correlation Coefficient (R) = 
𝑛∑𝑦.𝑦′−(∑𝑦)(∑𝑦′)

√𝑛(∑𝑦2)−(∑𝑦)2⁡⁡√𝑛(∑𝑦′
2
)−⁡(∑𝑦′)2

 (5) 

Mean Absolute Error (MAE) = 
1

n
∑ |y-y'|n

i=1  (6) 

Root Mean Squared Error (RMSE) = √
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛
𝑖=1  (7) 

Where y is the actual value, y’ is the predicted value, and n is the number of instances/data points. 

The linear correlation coefficient (R) is a measure of how well the model fits the actual data. Along 

with R, the coefficient of determination (R2) is also used. It is a measure of what proportion of 

variability in the dependent/target variable is explained by the model. MAE indicates the relative 

goodness-of-fit. The RMSE indicates the average distance of a data point from the fitted line.  

Evaluation of various ML algorithms: The three cured datasets (Manual, Naïve, and FHDI 

method) were used to train prediction models for thermal conductivity considering all 18 features 

(predictors/independent variables). 10-fold cross-validation was applied in all models. Function, 

tree, and ensemble learning-based ML models were trained, as discussed earlier in section 2. The 

parameters of each of the models were tuned to obtain the best possible performance. The final 

parameter settings used for the three categories of models are listed in Table 3.  

In the linear regression model, Akaike Information Criteria (AIC) was applied to reduce 

overfitting. AIC introduces a penalty term for the number of parameters in the model and also 

provides a trade-off between the model complexity (the number of parameters needed to describe 

the model) and quality of the fit of the data (Dziak et al. 2019). As discussed earlier, some function 

and ensemble learning-based models require a kernel as their covariance matrix (Omran et al. 

2016). Hence, in the cases of GPR, SVR, additive regression, and bagging algorithms, polykernel 

was selected. An 18-8-1 architecture (18 nodes in the input layer, 8 nodes in the hidden layer, and 
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1 node in the output layer) was selected for the ANN model at a learning rate of 0.3 and momentum 

of 0.2.  For all three tree-based algorithms, the batch size was limited to 100, which is the preferred 

number of instances to be processed, while performing batch prediction. The depth of the tree in 

the case of the random tree was kept unlimited. In regression trees, the minimum proportion of 

variance needs to be specified for performing splitting at a node (Frank et al. 2016). This value 

was set to 0.0001 in random and REP tree.  

Model selection and further development: The relative predictive performances of all the ML 

models presented above were evaluated based on three performance measures (R2, MAE, and 

RMSE) as discussed earlier. The models that furnished high R2 values and low values of the error 

statistics i.e. MAE and RMSE were then selected as the best-performing models on the given 

dataset. An in-depth tuning of the parameters of the selected models was then performed to further 

develop a robust ML model for the prediction of thermal conductivity. An optimization technique, 

called feature selection, was also applied to improve the robustness of the model. 

Feature selection: Feature selection is a technique of selecting only those features that have a 

significant influence on the dependent/target variable. The irrelevant and redundant features are 

recognized through this technique, and then a decision is made on their removal. Keeping only 

influential features in an ML model improves its predictive performance by increasing the learning 

rate and reducing the effect of the curse of dimensionality (Marks et al. 2015; Song et al. 2018b; 

a; Witten et al. 2016). However, the features should not be removed solely on this basis. If a feature 

is physically important (i.e. based on domain expertise or physics principles) for the prediction of 

the dependent/target variable, it should be kept for future extension. Such an approach is called a 

physics-based ML approach that helps develop extensible and interpretable learning model (Cho 
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2019; Raissi et al. 2017a; b). In this study, various combinations of features were evaluated based 

on their relative influences on the prediction of thermal conductivity. The best-performing set of 

features were then chosen for the development of the model.  

Model testing: An ML predictive model can be called robust if its predictive performance is high 

not only on the training dataset that has been used to train it but also on an unseen dataset. In order 

to evaluate this, an independent dataset (presented in Table 2) was tested on the models developed 

from the previous step.  

Results and Discussions 

Comparison of ML Algorithms 

This section presents and evaluates the relative predictive performances of nine ML 

algorithms evaluated in this study. The values of R2, MAE, and RMSE, obtained after training of 

each of the ML models, are presented in Table 4 and are also plotted in Fig. 2 for a comparison 

purpose. A high value of the coefficient of determination (R2) and low values of error terms MAE 

and RMSE are desired for a robust predictive model. Considering these parameters, one can 

observe from Table 4 and Fig. 2(a) that in the function category of algorithms, the predictive 

performance of the ANN algorithm was the best on all three types of cured datasets. R2 values of 

0.8037, 0.8363, and 0.8560 were obtained in the case of manual, naïve, and FHDI cured data. On 

all three datasets, MAE and RMSE values lied below 0.18 and 0.27, respectively, when ANN was 

applied. In the category of tree-based algorithms, the algorithms were ranked in the order of 

predictive performance as Random forest > Random tree > REP tree in the case of manual and 

FHDI cured datasets. When applied on the FHDI dataset, the parameter setting of the Random 

forest algorithm (as shown in Table 3) furnished R2, MAE, and RMSE values of 0.8422, 0.15, and 

0.24, respectively. Compared with the random tree and REP tree, Random forest performed better.  
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In the ensemble – learning category, predictions by additive regression were closer to the actual 

value than those furnished by bagging. However, this was true only when the performances were 

compared in terms of R2 values. The MAE and RMSE values obtained on all three datasets did not 

show a particular trend to reach on a definite conclusion in this category.  

Comparing the predictive performance of all nine algorithms evaluated in this study, one 

can observe that ANN performed better than the rest of the algorithms on all three datasets. High 

R2 values (> 0.80), as well as low values of error terms, were obtained. Among the three datasets, 

FHDI cured dataset improved the performance of ANN with respect to manual and naïve curing. 

R2, MAE, and RMSE values of 0.8560, 0.14, and 0.23, respectively were obtained on FHDI 

dataset. Improved performance of the model on this dataset was due to the imputation procedure 

employed in FHDI, as discussed in section 3.2. The missing values were replaced on the basis of 

multivariate joint probability and EM algorithm, unlike the procedure followed in manual and 

naïve curing. 

The predictions by ANN (based on the model parameter settings presented in Table 3) are 

plotted in Fig. 3. Fig. 3(a) show the actual and predicted values of thermal conductivity (k) for 

each instance of the validation dataset. It can be noticed here that the full dataset consisted of 217 

points and since 10-fold cross-validation was applied, each validation dataset constituted 

approximately 22 data points. ANN predictions were similar and close to the actual k values except 

for a relatively large variation observed in instances 7 to 10.  These instances corresponded to 

higher values of k (3.0-4.5) for which only a small number of data points was available. Fig. 3(b) 

shows the comparison between the actual (x-axis) and model-predicted (y-axis) values of k. Data 

points closer to the straight line (actual = predicted) suggest better prediction accuracy of the 

model. From Fig. 3(b) also, it can be observed that the deviations from the straight line were large 



www.manaraa.com

98 

 

 

 

 

 

only at higher values of k. The errors obtained in the ANN predictions are plotted in Fig. 3(c). 

Most of the prediction errors lied in the range of -1 to 1, except for a few large errors (> -1) in 

instances 7 to 10. These results were consistent with those observed in Figs. 3(a) and 3(b). Based 

on the results from the comparisons of ML algorithms and data curing methods, ANN algorithm 

and FHDI cured dataset was chosen for further development in order to improve the predictive 

performance.  

Feature Selection 

The predictive performance of ANN can be improved further by removing redundant 

features and selecting only a set of important features. In this study, seven different sets of features 

were evaluated. Sets I-IV are discussed first and Sets V-VII will be discussed later. 

Set I – This set consisted of all 18 features as presented in Table 1. Parameters corresponding to 

the concrete mix proportion as well as the measured properties were included in this set of features. 

Set II – With an aim to predict the thermal conductivity of concrete using only the concrete mix 

proportion parameters, only such features were included in Set II. These features were w/b, wcement, 

wfly ash, wslag, wsilica fume, wother SCMs, wwater, wFA, wCA, wfiber, type of fiber, type of FA, and type of 

CA. The total number of features in this set was 13. 

Set III – This set contained a total of 6 features that corresponded to water-binder ratio and other 

non-mix proportion parameters. These features were w/b, dry density, temperature, age, 

compressive strength, and moisture condition of concrete.  

Set IV – This set was developed by following a ranking procedure that works on a mean decrease 

in impurity (MDI). The measure on which the optimal condition of dataset split at a node in a 

random forest is chosen is called impurity (Kuhn and Johnson 2013). For a forest, the decrease in 

impurity from each feature is averaged and the features are ranked based on their measure. The 
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ranking of features of the FHDI cured dataset is shown in Fig. 4. It shows the relative importance 

of all 18 features on a scale of 0 to 100%. The sum of all values adds up to 100%.  

It can be observed that out of the 18 features, the type of coarse aggregate (CA) and the 

type of fine aggregate (FA) showed the highest influence on the prediction of thermal conductivity. 

The relative importance of the type of CA and FA were 41% and 27.5%, respectively. This can be 

attributed to the fact that thermal conductivity of aggregates is determined by mineralogical 

characteristics of the aggregates, and these characteristics define the types of the aggregates. Since 

60-70% volume of a concrete mix is occupied by coarse and fine aggregates, the types of the 

aggregates will have the most effect on the thermal conductivity of the concrete. Next five features 

in terms of relative importance were moisture condition, WFA, w/b, Ww, and WCA with their values 

around 3-4%. Dry density of concrete, which also indicates the porosity of the concrete, was the 

most important measured property of concrete (2.3%) from the perspective of k prediction. Since 

the air in concrete pores is not conductive, k values of concrete decreased with its increasing 

porosity or reducing dry density. Following dry density of concrete was another measured 

property, compressive strength (2%), which is also closely related to concrete porosity. However, 

the age of concrete and the weights of cementitious materials, such as fly ash, slag, silica fume, 

and others, were amongst the least influential features with their relative importance values below 

0.6%. Therefore, these parameters were not considered separately. Instead, the weights of all 

SCMs were included in the weight of cementitious materials represented as wcementitious. The 

relative importance of age, to k prediction, was also found to be very less (0.5%), however, 

previous studies have suggested a considerable change in the value of k of concrete with its age 

(Breugel 1998; Brown and Javaid 1970; Choktaweekarn 2009; Schindler 2002). Hence, age was 

also included as one of the features in this set. In total, set IV consisted of fourteen features, 
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namely, w/b, wcementitious, wwater, wFA, wCA, wfiber, dry density, temperature, age, strength, moisture 

condition, type of fiber, type of FA, and type of CA.  

Regarding Sets V-VII, below are the descriptions and discussions: 

Set V – This set was developed from correlation-based feature subset (CFS) selection. In this 

procedure, the features are evaluated based on their individual predictive ability as well as the 

degree of redundancy between them. Feature subsets that are highly correlated with the target 

variable and have low intercorrelation are preferred (Witten et al. 2016). A subset of seven features 

was selected using this method. These features were w/b, wFA, wCA, wfiber, dry density, moisture 

condition, and type of CA. 

Sets VI and VII – These sets of features were developed based on the principal component analysis 

(PCA). In this method, most of the variability in the data is explained with a smaller number of 

features than the original dataset. PCA furnishes a low-dimensional representation of the dataset 

where each dimension is a linear combination of features (Kuhn and Johnson 2013). There can be 

‘n’ number of such dimensions (where ‘n’ is the total number of features in the original dataset) 

called as principal components (PCs). The first PC usually captures the most variability while the 

subsequent PCs capture the remaining variability while also being uncorrelated with all previous 

PCs. Mathematically, the jth PC, or  𝑃𝐶𝑗 ,⁡can be represented as shown in Eq. (5) (Kuhn and 

Johnson 2013). 

𝑃𝐶𝑗 = (𝑎𝑗1 ⁡× ⁡𝑓𝑒𝑎𝑡𝑢𝑟𝑒⁡1) + (𝑎𝑗2⁡𝑥⁡𝑓𝑒𝑎𝑡𝑢𝑟𝑒⁡2) +⁡∙⁡∙⁡∙⁡∙ ⁡+(𝑎𝑗𝑛⁡𝑥⁡𝑓𝑒𝑎𝑡𝑢𝑟𝑒⁡𝑛) (5) 

Where, n is the number of features, and coefficients aj1, aj2..., ajn are the weights of their 

corresponding components. Fig. 5 shows the percentage of variance explained by the PCs. PC 1 

and PC 2 explains 28.46% and 15.45 % of the variance, respectively. Rest of the 16 PCs explain 

the remaining 56% of the variance. Fig. 6 summarizes a biplot obtained from PCA. Arrows in the 
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plot represent each feature of the dataset. The arrows closer to each other means that the 

corresponding features are highly correlated and vice-versa. The arrows to the right side of the 

origin on the x-axis suggest that the corresponding features are positively correlated to PC1 and 

vice-versa. Based on these observations from PCA biplot, feature sets VI and VII were developed 

containing features in the positive direction and negative direction, respectively. Set VI contained 

12 features, namely, w/b, wsilica fume, wother SCMs, wFA, wCA, wfiber, dry density, temperature, age, 

strength, type of fiber, and type of FA. Set VII consisted of 6 features – wcement, wfly ash, wslag, wwater, 

moisture condition, and type of CA.  

The performance of ANN on FHDI cured dataset was evaluated considering above-

mentioned seven sets of features. Table 5 presents the obtained R2 values in the case of different 

feature sets. On all the sets, R2 values in the range of 0.5684 to 0.8440 were obtained. The highest 

R2 was furnished in the case of set IV (0.8440) that contained 14 important features selected based 

on MDI. This suggests that as compared to other sets of features, ANN developed using set IV 

features can best explain the variability in the data. Therefore, it was decided to use features of 

only set IV for further development of the ANN prediction model.  

ANN Model Development 

The comparison of various data on curing methods, ML algorithms, and sets of features 

revealed that an ANN model, developed using FHDI cured dataset and 14 input features, would 

perform the best in predicting k of concrete. The parameters of the ANN model were further tuned 

in this section to optimize the prediction accuracy.  

Developing a neural network requires the division of the complete dataset into two sets: 

training and testing. The dataset of 217 points developed in this study (Table 1) was randomly 

divided into these two sets with 80% corresponding to the training set and 20% to the test set. 
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Training of the network is another important step in which the weights of the neurons are adjusted 

to optimize the prediction accuracy. Levenberg-Marquardt Backpropagation (LMBP) training 

algorithm was employed in this study as it is known to be effective (Hagan and Menhaj 1994). 

There are some issues associated with a neural network that needs to be taken into account during 

training. For example, increasing the number of hidden layers and/or number of neurons in the 

hidden layer can also make the network more prone to overfitting, thereby increasing 

generalization error (John Lu 2010; Kuhn and Johnson 2013). Therefore, the number of neurons 

in the hidden layer was varied from 2 to 14 to optimize the performance by minimizing the mean 

squared error, generalization error, and overfitting. Fig.  shows the R2 values obtained after training 

the network by varying the number of neurons in the hidden layer. It can be observed that 

increasing the number of neurons increased R2 in the case of both the sets up to 6 neurons after 

which it reduced. The network containing 6 neurons furnished R2 of 0.9730 and 0.8722 on the 

training and test dataset, respectively which were the highest values. Hence, the number of neurons 

in the hidden layer of the network were kept as 6. The developed final ANN architecture was 14-

6-1 as shown in Fig. 8. This denotes the number of neurons in the input, hidden, and output layers 

as 14, 6, and 1, respectively. The inputs for the network were w/b, wcementitious, wwater, wFA, wCA, 

wfiber, dry density, temperature, age, strength, moisture condition, type of fiber, type of FA, and 

type of CA. To minimize overfitting, another method called early stopping was also employed. In 

this method, the model is trained only for a while and stops well before approaching the global 

minima (John Lu 2010). The input features were also normalized on a scale of 0 to 1, as discussed 

earlier in section 3.2 as well. 

The performance of the developed 14-6-1 ANN model is presented in Fig. . The 

comparison of actual conductivity (k) and ANN model predicted conductivity for the training and 
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test set is shown in Fig.  (a) and (b), respectively. Fig.  (c) and (d) show the absolute prediction 

errors (predicted-actual) for the training and test set. The best fit lines for the training and test set 

furnished R2 values of 0.9730 and 0.8429, respectively. The prediction errors in the case of both 

the sets lied in the range of [-0.6, 0.6] with a few large errors observed in the case of instances 

containing higher k values. Final mean squared error (MSE) values for the training and test set 

were 0.0010 and 0.0044, respectively. The MSE values of the two sets were not significantly 

different and it also means that the overfitting was minimized. Overall, it can be said that a 

reasonable match in the actual and ANN model predicted values of thermal conductivity was 

obtained with a combined R2 of 0.9079 and MSE of 0.0027.  

ANN Model Performance on an Independent Dataset 

The predictive performance of the developed ANN model was shown to be satisfactory (in 

section 4.3) on the dataset used to train the model with an overall R2 of 0.9079. However, the 

developed model can be said to be robust if it can make correct predictions on an unseen dataset 

as well. Unseen data here means a dataset that has values in the range similar to the training data; 

however, it has not been used to train the model. In this study, an independent testing dataset 

(presented in Table 2) was used to evaluate the robustness of the developed ANN model. The 

predictive performance on this test set is presented in Fig. . Fig.  (a) shows the actual and predicted 

k values - for each instance of the test set, Fig.  (b) shows the comparison between the actual and 

predicted k values for the complete test set, and Fig.  (c) presents the error (predicted-actual) 

corresponding to each instance. A determination coefficient of 0.7676 was obtained [Fig.  (b)], 

which suggests that 76% of the variability in the predicted k value can be explained by the model. 

It can be observed from Fig.  (a) and (c) that a good match in the actual and predicted values was 

obtained with small deviations and errors, except for the instances 20-22 and 52-60. These 
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instances consisted of data from lightweight concrete mixes (containing expanded shale 

lightweight coarse aggregate) whose measured k values were less than 1 W/m-K. The training data 

did not constitute enough values in this range which might be the reason for a relatively larger 

deviation in the actual and predicted values. However, the errors were still less than ±0.20. Overall, 

it can be said that the developed 14-6-1 ANN model performed reasonably well on an unseen and 

independent test set and ANN is an adequate machine learning tool for the prediction of thermal 

conductivity of concrete. 

Conclusions 

A database of 217 data points, containing thermal conductivity (k) values of concrete and 

other parameters affecting these values (features), was developed from published articles. The 18 

features consisted of concrete mix proportion parameters (e.g., water-binder ratio, the weight of 

constituents, type and mineralogy of aggregates, etc.), measured properties (e.g., concrete dry 

density, compressive strength, etc.), and thermal conductivity testing parameters (age, temperature 

and moisture condition). Various machine learning algorithms were evaluated on the dataset for 

the prediction of thermal conductivity. Based on the observations from this study, the following 

conclusions can be drawn: 

• Compared to manual and Naïve methods of replacing missing values, Fractional Hot-Deck 

Imputation (FHDI) method improved the performance of ML models.  

• Considering all 18 features, the predictive performance of function, tree, and ensemble-

learning based ML algorithms on three differently cured datasets (Manual, Naïve, and FHDI) 

was compared. In the function-based category, the artificial neural network (ANN) performed 

the best on FHDI-cured dataset with R2 of 0.8560, MAE value of 0.14, and RMSE value of 

0.23. Random forest (RF) was the best performing algorithm in the tree-based category.  
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• Seven different sets of features were selected based on educated judgment, MDI, CFS, and 

PCA. In the MDI method, all the features were ranked (on a scale of 0 to 100%) on the basis 

of their relative influences on the prediction of k. In the category of mix proportion 

parameters, the types of coarse and fine aggregate were found to be the most dominant 

features with their relative importance values being 41% and 27.5%, respectively. The dry 

density of concrete was found to have the highest influence on the prediction of k value (2.3%) 

in the category of measured properties. The predictive performance of ANN, considering 14 

important features selected from MDI, was the best amongst all sets of features. These features 

were water-to-binder ratio, weights of cementitious materials and water, weights and types of 

fine aggregate (FA), coarse aggregate (CA), and fiber, concrete dry density and strength, 

testing age, temperature, and moisture condition. 

• An improved ANN model was developed with 14 neurons in the input layer, one hidden layer 

with 6 neurons, and one output layer. The performance of the developed model was 

satisfactory with R2 of 0.9730 and 0.8429 for the training (80%) and testing dataset (20%), 

respectively. The robustness of the model was evaluated on an unseen/independent testing 

dataset. R2 of 0.7676 was obtained and absolute errors (the difference between predicted and 

actual values) for all the instances were less than ±0.20 with a few relatively large errors 

observed in the case of lightweight concrete mixes.  

Acknowledgments  

The present work was derived from a literature review on thermal conductivity of concrete, 

which was a part of a research project on mass concrete sponsored by Iowa Highway Research 

Board (IHRB).  The authors would like to acknowledge the sponsorship from IHRB.  

 



www.manaraa.com

106 

 

 

 

 

 

References 

AASHTO. (2013). AASHTOWare Pavement ME Design. Washington, D.C., USA. 

 

ACI (American Concrete Institute). (2002). “Guide to Thermal Properties of Concrete and 

Masonry Systems.” ACI 122-02, Farmington Hills, MI. 

 

Atici, U. (2011). “Prediction of the strength of mineral admixture concrete using multivariable 

regression analysis and an artificial neural network.” Expert Systems with Applications, 38, 

9609–9618. 

 

Breiman, L. (1996). “Bagging predictors.” Machine Learning, 24(2), 123–140. 

 

Breiman, L. (2001). “Random Forests.” Machine Learning, 45(1), 5–32. 

 

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression 

trees. Chapman & Hall/CRC, Taylor & Francis, Boka Raton, FL, USA. 

 

Breugel, K. Van. (1998). “Prediction of Temperature in Hardening Concrete.” Prevention of 

Thermal Cracking in Concrete at Early Ages, R. Springenschmid, ed., London, 51–74. 

 

Brown, T. D., and Javaid, M. Y. (1970). “The thermal conductivity of fresh concrete.” Materials 

and Structures/Materiaux et Constructions, 3(18), 411–416. 

 

Brownlee, J. (2016). Master Machine Learning Algorithm. Ebook. 

 

Campbell-Allen, D., and Thorne, C. P. (1963). “The thermal conductivity of concrete.” Magazine 

of Concrete Research, 15(43). 

 

Carlson, J. D., Bhardwaj, R., Phelan, P. E., Kaloush, K. E., and Golden, J. S. (2010). “Determining 

Thermal Conductivity of Paving Materials Using Cylindrical Sample Geometry.” Journal of 

Materials in Civil Engineering, 22(2), 186–195. 

 

Cavalline, T. L., Castrodale, R. W., Freeman, C., and Wall, J. (2017). “Impact of Lightweight 

Aggregate on Concrete Thermal Properties.” ACI Materials Journal, 114, 945–956. 

 

Chithra, S., Kumar, S. R. R. S., Chinnaraju, K., and Alfin Ashmita, F. (2016). “A comparative 

study on the compressive strength prediction models for High Performance Concrete 

containing nano silica and copper slag using regression analysis and Artificial Neural 

Networks.” Construction and Building Materials, 114, 528–535. 

 

Cho, I. H. (2019). “A Framework for Self-Evolving Computational Material Models Inspired by 

Deep Learning.” International Journal for Numerical Methods in Engineering, In Press. 

 



www.manaraa.com

107 

 

 

 

 

 

Choktaweekarn, P. (2009). “A model for predicting thermal conductivity of concrete.” Magazine 

of Concrete Research, 61(4), 271–280. 

 

Chou, J.-S., Chien-Kuo, ;, Chiu, P. E., Farfoura, M., and Al-Taharwa, I. (2011). “Optimizing the 

Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-

Mining Techniques.” Journal of Computing in Civil Engineering, 25(3), 242–253. 

 

Chou, J.-S., and Tsai, C.-F. (2012). “Concrete compressive strength analysis using a combined 

classification and regression technique.” Automation in Construction, 24, 52–60. 

 

Chou, J.-S., Tsai, C.-F., Pham, A.-D., and Lu, Y.-H. (2014). “Machine learning in concrete 

strength simulations: Multi-nation data analytics.” Construction and Building Materials, 73, 

771–780. 

 

Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and 

Other Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK. 

 

Dasgupta, B., Liu, D., and Siegelmann, H. T. (2018). “Neural networks.” Handbook of 

Approximation Algorithms and Metaheuristics, T. Gonzalez, ed., Chapman & Hall/CRC, 

Boka Raton, FL, USA. 

 

Dattagupta, S. (2013). “Gaussian Processes.” Diffusion: Formulism and Applications, Taylor & 

Francis, Boka Raton, FL, USA. 

 

Demirbog˘, R. (2007). “Thermal conductivity and compressive strength of concrete incorporation 

with mineral admixtures.” Building and Environment, 42, 2467–2471. 

 

Deshpande, N., Londhe, S., and Kulkarni, S. (2014). “Modeling compressive strength of recycled 

aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression.” 

International Journal of Sustainable Built Environment, 3(2), 187–198. 

 

Duan, Z. H., Kou, S. C., and Poon, C. S. (2013). “Prediction of compressive strength of recycled 

aggregate concrete using artificial neural networks.” Construction and Building Materials, 

40, 1200–1206. 

 

Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., and Jermiin, L. S. (2019). “Sensitivity and 

Specificity of Information Criteria.” bioRxiv, 449751. 

 

Erdal, H. I. (2013). “Two-level and hybrid ensembles of decision trees for high performance 

concrete compressive strength prediction.” Engineering Applications of Artificial 

Intelligence, 26, 1689–1697. 

 

Farrar, C. R., and Worden, K. (2013). Structural Health Monitoring: A Machine Learning 

Perspective. John Wiley & Sons, Ltd (10.1111), Chichester, West Sussex, UK. 

 



www.manaraa.com

108 

 

 

 

 

 

Folliard, K., Schindler, A., and Pesek, P. (2017). “ConcreteWorks V3 Training / User Manual 

ConcreteWorks Software ( P2 ).” Concrete Durability Center, Texas, USA. 

 

Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA Workbench: Online Appendix for 

“Data Mining: Practical Machine Learning Tools and Techniques.” Morgan Kaufmann. 

 

Ganjian, E. (1990). “The Relationship between Porosity and Thermal Conductivity of concrete.” 

PhD Dissertation, The University of Leeds. 

 

Grossi, E., and Buscema, M. (2007). “Introduction to artificial neural networks.” European 

Journal of Gastroenterology and Hepatology, 19(12), 1046–1054. 

 

Gui, J., Phelan E., P., Kaloush, K. E., and Golden, J. S. (2007). “Impact of pavement 

thermophysical properties on surface temperatures.” Journal of Materials in Civil 

Engineering, 19(8), 1–6. 

 

Hagan, M. T., and Menhaj, M. B. (1994). “Training feedforward networks with the Marquardt 

algorithm.” IEEE Transactions on Neural Networks, 5(6), 989–993. 

 

Hossain, M. I., Gopisetti, L. S. P., and Miah, M. S. (2019a). “International Roughness Index 

Prediction of Flexible Pavements Using Neural Networks.” Journal of Transportation 

Engineering, Part B: Pavements, American Society of Civil Engineers, 145(1), 4018058. 

 

Hossain, M. I., Gopisetti, L. S. P., and Miah, M. S. (2019b). “Prediction of International Roughness 

Index of Flexible Pavements from Climate and Traffic Data Using Artificial Neural Network 

Modeling.” Airfield and Highway Pavements 2017, Proceedings. 

 

Im, J., Cho, I. H., and Kim, J. K. (2018). “FHDI: An R Package for Fractional Hot Deck 

Imputation.” The R Journal, 10(1), 140–154. 

 

Im, J., Kim, J.-K., and Fuller, W. A. (2015). “Two-phase sampling approach to fractional hot deck 

imputation.” Survey Research Methodology Section, Seattle, WA, USA, 1030–1043. 

 

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). “Artificial neural networks: A tutorial.” 

Computer, 29(3), 31–44. 

 

John Lu, Z. Q. (2010). “The Elements of Statistical Learning: Data Mining, Inference, and 

Prediction.” Journal of the Royal Statistical Society: Series A (Statistics in Society), John 

Wiley & Sons, Ltd (10.1111), 173(3), 693–694. 

 

Khan, A. A., Cook, W. D., and Mitchell, D. (1998). “Thermal properties and transient thermal 

analysis of structural members during hydration.” ACI Materials Journal, 95(3), 293–303. 

 

Khan, M. . (2002). “Factors affecting the thermal properties of concrete and applicability of its 

prediction models.” Building and Environment, 37(6), 607–614. 



www.manaraa.com

109 

 

 

 

 

 

 

Kim, K.-H., Jeon, S.-E., Kim, J.-K., and Yang, S. (2003). “An experimental study on thermal 

conductivity of concrete.” Cement and Concrete Research, 33(3), 363–371. 

 

Kodur, V. K. R., and Sultan, M. A. (2003). “Effect of Temperature on Thermal Properties of High-

Strength Concrete.” Journal of Materials in Civil Engineering, 15(2), 101–107. 

 

Kohavi, R. (1995). “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and 

Model Selection.” Proc. International Joint Conference on Artificial Intelligence, Montreal, 

CA. 

 

Kuhn, M., and Johnson, K. (2013). Applied predictive modeling. Springer, New York. 

 

Kwang Kim, J., and Fuller, W. (2004). “Fractional hot deck imputation.” Biometrika, 91(3), 559–

578. 

 

Lee, J.-H., Lee, J.-J., and Cho, B.-S. (2012). “Effective Prediction of Thermal Conductivity of 

Concrete Using Neural Network Method.” International Journal of Concrete Structures and 

Materials, 6(3), 177–186. 

 

Lie, T. T., and Kodur, V. K. R. (1996). “Thermal and mechanical properties of steel-fibre-

reinforced concrete at elevated temperatures.” Canadian Journal of Civil Engineering, 23(2), 

511–517. 

 

Liu, K., Lu, L., Wang, F., and Liang, W. (2017). “Theoretical and experimental study on multi-

phase model of thermal conductivity for fiber reinforced concrete.” Construction and 

Building Materials, 148, 465–475. 

 

MacKay, D. J. C. (1998). “Introduction to Gaussian Processes.” NATO ASI Series F Computer and 

Systems Sciences. 

 

Majumder, M. (2015). “Artificial Neural Network.” 

 

Marks, M., Glinicki, M. A., and Gibas, K. (2015). “Prediction of the chloride resistance of concrete 

modified with high calcium fly ash using machine learning.” Materials, 8(12), 8714–8727. 

 

Marshall, A. L. (1972). “The Thermal Properties of Concrete.” Build. Sci, Pergamon Press, 7, 167–

174. 

 

Morabito, P. (1989). “Measurement of the thermal properties of different concretes.” High 

Temperatures-High Pressures, 21(1), 51–59. 

 

Murphy, K. P. (2018). Machine Learning: A Probabilistic Perspective, ; Adaptive Computation 

and Machine Learning Series. The MIT Press: London, UK, Cambridge, MA. 

 



www.manaraa.com

110 

 

 

 

 

 

Naderpour, H., Rafiean, A. H., and Fakharian, P. (2018). “Compressive strength prediction of 

environmentally friendly concrete using artificial neural networks.” Journal of Building 

Engineering, 16, 213–219. 

 

Neves, A. C., González, • I, Leander, • J, and Karoumi, • R. (2017). “Structural health monitoring 

of bridges: a model-free ANN-based approach to damage detection.” Journal of Civil 

Structural Health Monitoring, 7(5), 689–702. 

 

Omran, B. A., Chen, ; Qian, Asce, A. M., and Jin, R. (2016). “Comparison of Data Mining 

Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete.” 

Journal of Computing in Civil Engineering, 30(6), 04016029. 

 

Opitz, D., and Maclin, R. (1999). “Popular Ensemble Methods: An Empirical Study.” Journal of 

Artificial Intelligence Research, 11, 169–198. 

 

Poole, J., Riding, K., Browne, R. A., and Schindler, A. (2006). “Temperature management of mass 

concrete structures.” Concrete Construction - World of Concrete, Hanley Wood LLC, 51(11), 

47–53. 

 

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017a). “Physics Informed Deep Learning (Part 

I): Data-driven Solutions of Nonlinear Partial Differential Equations.” Computing Research 

Repository. 

 

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017b). “Physics Informed Deep Learning (Part 

II): Data-driven Discovery of Nonlinear Partial Differential Equations.” Computing Research 

Repository. 

 

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. the 

MIT Press. 

 

Riding, K. A., Poole, J. L., Schindler, A. K., Juenger, M. C. G., and Folliard, K. J. (2013). 

“Statistical Determination of Cracking Probability for Mass Concrete.” Journal of Materials 

in Civil Engineering, 26(9), 04014058. 

 

Sadati, S., Enzo, L., Ii, D. C. W., and Khayat, K. H. (2019). “Artificial Intelligence to Investigate 

Modulus of Elasticity of Recycled Aggregate Concrete.” ACI Materials Journal, (116), 51–

62. 

 

Sargam, Y., Wang, K., and Alleman, J. E. (2018). “Experimental Study on the Effect of Concrete 

Constituents on its Thermal Conductivity.” 3rd R N Raikar Memorial International 

Conference on Science and Technology of Concrete, Excel India Publishers, Mumbai, India, 

917–925. 

 

Sargam, Y., Wang, K., and Alleman, J. E. (2019). “Effect of Modern Concrete Materials on 

Thermal Conductivity.” Journal of Materials in Civil Engineering, In Press. 



www.manaraa.com

111 

 

 

 

 

 

 

Schindler, A. K. (2002). “Concrete Hydration, Temperature Development, and Setting at Early-

Ages.” PhD Dissertation, The University of Texas at Austin. 

 

Seeger, M. (2004). “Gaussian processes for machine learning.” International journal of neural 

systems, 14(2), 69–106. 

 

Sengul, O., Azizi, S., Karaosmanoglu, F., and Tasdemir, A. (2011). “Effect of expanded perlite on 

the mechanical properties and thermal conductivity of lightweight concrete.” Energy & 

Buildings, 43, 677–682. 

 

Song, I., Cho, I. H., and Wong, R. K. W. (2018a). “An Advanced Statistical Approach to Data-

Driven Earthquake Engineering.” Journal of Earthquake Engineering, Taylor & Francis, 1–

25. 

 

Song, I., Cho, I., Tessitore, T., Gurcsik, T., and Ceylan, H. (2018b). “Data-Driven Prediction of 

Runway Incursions with Uncertainty Quantification.” Journal of Computing in Civil 

Engineering, American Society of Civil Engineers, 32(2), 4018004. 

 

Song, I., Yang, Y., Im, J., Tong, T., Ceylan, H., and Cho, I. (2019). “Impacts of Fractional Hot-

Deck Imputation on Learning and Prediction of Engineering Data.” IEEE Transactions on 

Knowledge and Data Engineering, 1. 

 

Taffese, W. Z., and Sistonen, E. (2017). “Machine learning for durability and service-life 

assessment of reinforced concrete structures: Recent advances and future directions.” 

Automation in Construction, 77, 1–14. 

 

Tinker, L., and Cabrera, J. G. (1992). “Modeling the Thermal Conductivity of Concrete Based on 

Its Measured Density and Porosity.” Buildings V. Conference Proceedings, 91–95. 

 

Tino, P., Benuskova, L., and Sperduti, A. (2015). “Artificial neural network models.” Springer 

Handbook of Computational Intelligence, Springer, 455–471. 

 

Trocoli, A., Dantas, A., Leite, M. B., De, K., and Nagahama, J. (2013). “Prediction of compressive 

strength of concrete containing construction and demolition waste using artificial neural 

networks.” Construction and Building Materials, 38, 717–722. 

 

Valore, R. C. (1980). “Calculation of U-values of Hollow Concrete Masonary.” Concrete 

International, 2(2), 40–63. 

 

Vejmelková, E., Koňáková, D., Kulovaná, T., Hubáček, A., and Černý, R. (2014). “Mechanical 

and thermal properties of moderate-strength concrete with ceramic powder used as 

supplementary cementitious material.” Advanced Materials Research, 1054, 194–198. 

 



www.manaraa.com

112 

 

 

 

 

 

William, N., Kassahun, A., Gina, B., Albert, E., and Mannur, S. (2015). “A Study of Machine 

Learning Techniques for Detecting and Classifying Structural Damage.” International 

Journal of Machine Learning and Computing, 5(4), 313–318. 

 

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical machine 

learning tools and techniques. Morgan Kaufmann, Cambridge, MA, USA. 

 

Worden, K., and Manson, G. (2007). The application of machine learning to structural health 

monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, The Royal Society Publishing, London, UK. 

 

Young, B. A., Hall, A., Pilon, L., Gupta, P., and Sant, G. (2019). “Can the compressive strength 

of concrete be estimated from knowledge of the mixture proportions?: New insights from 

statistical analysis and machine learning methods.” Cement and Concrete Research, 115, 

379–388. 

 

Zewdu Taffese, W., Sistonen, E., and Puttonen, J. (2015). “CaPrM: Carbonation prediction model 

for reinforced concrete using machine learning methods.” Construction and Building 

Materials, 100, 70–82. 

 

Zhu, L., Dai, J., Bai, G., and Zhang, F. (2015). “Study on thermal properties of recycled aggregate 

concrete and recycled concrete blocks.” Construction and Building Materials, 94, 620–628. 

  



www.manaraa.com

113 

 

 

 

 

 

 

 

 

Figures 

 

 

 

 

Fig. 1. Flow chart of model development for prediction of thermal conductivity 
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(a) Function-based       (b) Tree-based 

 

(c) Ensemble-based 

Fig. 2. Predictive performance of ML algorithms
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Fig. 3. ANN model performance with 18 input features; (a) actual and predicted values for all instances; (b) correlation 

coefficient between actual and predicted values; and (c) absolute errors for all instances
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Fig. 4. MDI-based relative importance of input features on prediction of thermal 

conductivity 

 

Fig. 5. Scree plot from PCA 
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Fig. 6. Biplot from PCA 

 

Fig. 7. Performance of ANN model by varying the number of neurons in hidden layer 
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Fig. 8. 14-6-1 ANN architecture (Figures in black represent the weights and those in blue 

represent the biases of the network) 
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Fig. 9. 14-6-1 ANN model performance – actual and predicted values comparison on (a) training and (b) test dataset; and 

absolute prediction errors for all instances of (c) training and (d) test dataset
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Fig. 10. 14-6-1 ANN model performance on independent test set; (a) actual and predicted values for all instances; (b) 

correlation coefficient between actual and predicted values; and (c) absolute errors for all instance
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Tables 

Table 1. Thermal conductivity database developed from published articles 

No. Feature Unit Min Max Mean Std. deviation 

1 Thermal conductivity (k) W/m-K 0.2 4.18 1.58 0.60 

2 w/b ratio 0.25 0.62 0.40 0.09 

3 Wt. of cement  

(wCement) 

kg/m3 0 1762 609.11 420.31 

4 Wt. of fly ash  

(wFly ash) 

kg/m3 0 973 12.05 75.89 

5 Wt. of slag  

(wSlag) 

kg/m3 0 1282 9.95 97.42 

6 Wt. of silica fume  

(wSilica fume) 

kg/m3 0 52.5 5.85 15.77 

7 Wt. of other SCMs  

(wOther SCMs) 

kg/m3 0 231 4.60 27.58 

8 Wt. of water  

(wWater) 

kg/m3 124 558 244.32 136.10 

9 Wt. of fine agg.  

(wFine agg.) 

kg/m3 0 1559 556.39 308.74 

10 Wt. of coarse agg.  

(wCoarse agg.) 

kg/m3 0 1850 776.35 453.13 

11 Wt. of fiber 

 (wFiber) 

kg/m3 0 117 7.93 21.60 

12 Dry density kg/m3 1434 2390 2012.82 281.24 

13 Temperature °C 20 1000 96.69 191.18 

14 Age day 3 28 17.60 10.52 

15 Compressive strength MPa 18.7 99.2 54.01 24.04 

16 Moisture condition categorical dry and saturated 

17 Type of fiber categorical steel and carbon 

 

18 

 

Type of FA 

 

categorical 

silica sand, quartz sand, lightweight, recycled, and natural+recycled 

 

19 

 

Type of CA 

 

categorical 

limestone, carbonate, siliceous, crushed stone, granitic gneiss, recycled, 

virgin+recycled, gravel, basalt, siltstone, quartzite, lightweight 
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Table 2. Independent test set developed from 18 concrete mixes 

 

 

 

 

 

 

No. Feature Unit Min Max Mean Std. deviation 

1 Thermal conductivity (k) W/m-K 0.69 1.25 1.05 0.15 

2 w/b ratio 0.35 0.55 0.42 0.03 

3 wCement kg/m3 176 352 299.51 51.69 

4 wFly ash kg/m3 0 141 60.58 39.46 

5 wSlag kg/m3 0 106 10.45 28.83 

6 wSilica fume kg/m3 0 0 0 0 

7 wOther SCMs kg/m3 0 0 0 0 

8 wWater kg/m3 122 192 155.13 9.98 

9 wFine agg. kg/m3 747 980 847.64 53.15 

10 wCoarse agg. kg/m3 370 975 843.15 143.27 

11 wFiber kg/m3 0 18.16 2.78 5.31 

12 Dry density kg/m3 1621 2281 2182.60 177.51 

13 Temperature °C 21 23 22.00 1.00 

14 Age Day 28 28 28.00 0 

15 Compressive strength MPa 29 55 44.78 7.43 

16 Moisture condition categorical dry 

17 Type of fiber categorical steel  

18 Type of FA categorical silica sand 

19 Type of CA categorical limestone, lightweight, recycled, virgin+recycled 
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Table 3. Parameter settings of machine learning algorithms 

Category ML Algorithm Parameters 

 

 

 

Function 

Linear Regression (LR) Using Akaike Information Criteria (AIC) 

Gaussian Processes Regression 

(GPR) 

Batch size = 100, noise = 1.0, exponent value = 3, 

polykernel 

Artificial Neural Network (ANN) 1 input, 1 hidden, 1 output layer, 8 neurons in 

hidden layer, learning rate = 0.3, momentum = 0.2 

Support Vector Regression (SVR) Batch size = 100, complexity parameter = 1.0, 

exponent value = 3, polykernel 

 

Tree 

Random Forest Batch size = 100, iteration = 100 

Random Tree Batch size = 100, maximum depth of tree – 

unlimited, minimum proportion of variance = 0.001 

REP Tree Batch size = 100, minimum proportion of variance 

= 0.001 

 

Ensemble-

learning 

Additive Regression Base classifier - GPR, iterations = 10, shrinkage 

rate = 1, exponent value = 3, polykernel 

Bagging Base classifier - GPR, iterations = 80, exponent 

value = 3, polykernel 
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Table 4. Performance evaluation of ML algorithms 

 

Category 

 

ML Algorithm 

Manual cured Naive cured FHDI cured 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE 

 

 

Function 

LR 0.6833 0.2081 0.3239 0.8134 0.1843 0.2622 0.8068 0.1868 0.2664 

GPR 0.7362 0.2196 0.3325 0.8120 0.1873 0.2650 0.8111 0.1877 0.2654 

ANN 0.8037 0.1750 0.2694 0.8363 0.1496 0.2497 0.8560 0.1462 0.2382 

SVR 0.7297 0.1895 0.3224 0.7700 0.1847 0.2916 0.7663 0.1867 0.2939 

 

 

Trees 

Random Forest 0.7795 0.1920 0.3236 0.6796 0.2613 0.3560 0.8422 0.1501 0.2458 

Random Tree 0.7054 0.1981 0.336 0.6892 0.2013 0.3402 0.7157 0.1944 0.3283 

REP Tree 0.6670 0.2204 0.3501 0.6540 0.2071 0.3409 0.6767 0.2116 0.3456 

 

Ensemble 

Additive 

Regression 

0.7711 0.2253 0.2922 0.7578 0.2194 0.2989 0.7635 0.2110 0.2944 

Bagging 0.7244 0.2067 0.3188 0.7360 0.1821 0.3124 0.7302 0.1865 0.3158 
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Table 5. Comparison of performance of ANN on different sets of input features 

Feature set Features (No.) Name of features R2 

ANN 

 

I-all 

 

All (18) 

w/b, wcement, wfly ash, wslag, wsilica fume, wother SCMs, wwater, wFA, wCA, wfiber, dry 

density, temperature, age, strength, moisture condition, type of fiber, type of 

FA, type of CA 

 

0.7327 

 

II-mix 

Only mix 

proportion (13) 

w/b, wcement, wfly ash, wslag, wsilica fume, wother SCMs, wwater, wFA, wCA, wfiber, type of 

fiber, type of FA, type of CA 

 

0.5121 

 

III-non-mix 

Non-mix 

proportion & w/b 

(6) 

 

w/b, dry density, temperature, age, strength, moisture condition 

 

0.6384 

 

IV-MDI 

Selected from MDI 

(14) 

w/b, wcementitious, wwater, wFA, wCA, wfiber, dry density, temperature, age, strength, 

moisture condition, type of fiber, type of FA, type of CA 

 

0.8440 

 

V-CFS 

Selected from CFS 

(7) 

w/b, wFA, wCA, wfiber, dry density, moisture condition, type of CA 0.6997 

 

VI- PCA +ve 

Positive direction 

from PCA (12) 

w/b, wsilica fume, wother SCMs, wFA, wCA, wfiber, dry density, temperature, age, 

strength, type of fiber, type of FA 

 

0.5684 

 

VII-PCA  

-ve 

Negative direction 

from PCA (6) 

 

wcement, wfly ash, wslag, wwater,  moisture condition, type of CA 

 

0.5849 
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CHAPTER 5.    GENERAL CONCLUSIONS 

Experimental measurement and predictive analysis of mass concrete parameters and 

concrete thermal conductivity were performed in this study.  A computer program ConcreteWorks 

was used to predict the temperature development profile of the rectangular footing of a bridge. The 

predictions were validated with the measured data.   Effect of various materials, used as an additive 

or replacement to concrete, on its thermal conductivity was also determined experimentally. For 

the purpose of prediction of thermal conductivity, machine learning algorithms of three different 

categories (Function, Tree, and Ensemble-learning) were evaluated and an ANN model was 

developed.  Specific conclusions of this thesis are as follows: 

• A sensitivity study on mass concrete parameters (using ConcreteWorks) revealed a considerable 

impact of concrete mix proportion, cement type, concrete thermal properties, placement 

temperature, insulation R-value, and foundation subbase on temperature development in the 

footing.  

• ConcreteWorks predictions of absolute maximum temperature, maximum temperature 

differential, maturity, and compressive strength development for the rectangular footing were 

all very precise in their comparisons with the measured data. It can be said to be a useful tool 

for these predictions and for developing a thermal control plan. 

• Thermal conductivity of concrete reduced with an increase in the water-binder ratio, SCM, 

lightweight aggregate, and recycled aggregate replacements whereas the addition of steel fiber 

resulted in an increase of conductivity.  
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• During the initial period of curing (from 3 to 7 days), conductivity reduced. However, it 

increased afterward as curing continued up to 28 days. After 28 days, little change in 

conductivity was observed.  

• Machine learning algorithms of function, tree and ensemble-learning categories were evaluated 

for developing a prediction model for thermal conductivity of concrete. ANN performed the 

best and a 14-6-1 model architecture was finally adopted. The developed ANN model was 

robust in its predictions as it performed satisfactorily on an unseen/independent dataset 

furnishing R2 of 0.7676 and absolute errors (for all instances of the dataset) less than ±0.20.  
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